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Time-varying systems may suffer from two types of complexities:
high-dimensional states and large number of modes/subsystems.
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There may exist redundancies among the modes allowing for reduced modeling. PO ;—r:\e_an_s _____ ~y - .
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Markov Jump Systems (MJS) 1O & — | U;
: L:rs Clir = I _ top-r left
L . . ~ 12 .
5. X1 = Ay, xe + B,y I arg min Z Z U (2,:) — cgl| : singular
' wo, W1, - . . ~ Markov Chain(T) ' QrsCrir kelr] iy, J | vectors

state x; € R", input u; € R?
s number of modes
—{A, B}, {Ay, By}, ... {A, B}
Markov matrix T € R%*?
— Prob(wiy1 =5 | wr =1) =Ty
Goal: given the s-mode ¥, construct an 7-mode (r < s) MJS

& X1 = Ag X + By, wy
&g, W1, - - . ~ Markov Chain(T)

with mode dynamics {A;, B;}7_, and Markov matrix TER™".
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[ 1. Assumption and Preliminaries } . [ 2. Stability Difference }
Assumption ( Inner-cluster Slmllarlty) Among the clusters {Q.}:_,, assume | | Theorem 1 (Stability Difference). For ¥ and %, we have
for any cluster Q) and any modes i,i € O |§(ZA]) _ 00| < Kea
lA;i = Ail| < ea, [IBi =Byl <ep, [T :)— T, )1 <er () — p(D)| < T((24 + ea)ea + Aer)

for some €, eg, e > 0.

Definition 1 (Stability for MJS). For %, define
£(X):=joint spectral radius({A;};_,), p(X):=spectral radius(.A)

where A is a block matrix with the ij-th block given by Tj; - (A; ® A;). Then 4. LQR Controller Suboptimality |
( L J
uniform stability <= £(3) < 1, mean-square stability <= p(>) < 1

responses of the MJS.

Definition 2 (MJS-LQR). Given ., positive definite cost matrices Q and R,
define the following quadratic cost w.r.t. controllers KK = {K;}7_;,

{ 3. Trajectory Difference }

T
. 1 _
Theorem 2 ( Trajectory Difference). Suppose Xg = Xo, W < u, and Wy = k Jx(K) :=lim SUPE[T ZXtT Qx; + vy Rut] s.t. x; ~ 5 with uy = KX

T
whenever w; € Q) (mode synchrony between Y. and 5 ). Let py .= (1 + p(X))/2, o =0
& = (1+£(%))/2, and B := max; |By]. Let J* = ming Jy(K) denote the optimal cost.
B L _ r —~ D
When £(X) < 1 (uniform stability), ea < 1%/52) and eg < B, Theorem 3 (LQR Suboptimality). Suppose ¥ is mean- Q|1 ‘\‘
_ square stabilizable with additive noise N'(0,031). Design| .~~~ , %
N N 2(1 + t&))x*Bu KU S : 1A Zu
%, — % < t& 11432HX0||€A 4 0 €A + €n. controllers using > and deploy them to .. v ?,
< - —¢ . | . 0 Sy
{Ki}tioy =argming y  J5({Kitio), 2 Q3 '
When p(X) < 1 (mean-square stability), ex < min{A, 67’AHT||} and eg < B, K ={K;}_, st K, =K ifi € Q, “

\ and let J = Js(K). Then for small enough e, eg, and er, \'\‘ L

1 ! L |
— %1 < 4v/ns \/“ \/ AR i
Bl = %[l < dvnsty/too Al Tlxoll vea ﬂ J — J* < Coz(ns)°(ea + ep + 1)’ Ky /5
8<1 SB;-U( A||T|[+/ea + «/GB). /o X%t ' where C' is some problem dependent constant. N 'Ky
— P ) ~ )

Trajectory Difference For more details and results, see the complete version
Number of modes: s = 30 (original), » = 3 (after reduction) 1 (https:/ /arxiv.org/abs/2205.02697).
Fori=1,...,10, A; = [cos(6;), —sin(0;); sin(6;), cos(0;)] with 6; ~ {zunif(0.9,1.1); clustering performance guarantees
For i =11,...,20, A; = [a;,0;0; 1] with a; ~ unif(0.9, 1) ) — weaker assumptions
Fori=21,...,30, A; = [1,0;0; a;] with a; ~ unif(0.9,1) — . traiectory diff
B, =0, T=(1,1!/s+1,)/2, xog = [1,1] 1 0 1 stronger trajectory difference guar-

S antees w/o mode synchrony

LQR Controller Suboptimality 2.0 L . )
Number of modes: s = 100 (original), » = 4 (after reduction) 16 [110-3 uture wor
n=10,p=50w =0.1,x0 =1 er? 1 In= Extend to the case when the output is only par-
Randomly generated dynamics > and cost matrices QQ and R.. 0.8 1 = tially observed, i.e. y; = C,,X; for some measure-
Controllers are solved via Riccati iterations with tolerance 10712, 0.4 ] ment matrices {C;}{_;.
The plot shows the normalized suboptimality J L vs. er,€a = €p aver- 00 a1 Consider the case when there can be infinite num-
aged over 100 runs of experiments. 0.000.040.080.120.16 0.20 b o e,

€EA — €B
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