
Clustering-based Mode Reduction
for Markov Jump Systems
Zhe Du, Necmiye Ozay, Laura Balzano
Electrical and Computer Engineering, University of Michigan, Ann Arbor

Problem Setup
➢ Time-varying systems may suffer from two types of complexities:

high-dimensional states and large number of modes/subsystems.

There may exist redundancies among the modes allowing for reduced modeling.
➢ Markov Jump Systems (MJS)

Σ :=
{

xt+1 = Aωt
xt + Bωt

ut

ω0, ω1, . . . ∼ Markov Chain(T)
● state xt ∈ Rn, input ut ∈ Rp

● s number of modes
❏ — {A1, B1}, {A2, B2}, . . . , {As, Bs}

● Markov matrix T ∈ Rsxs

❏ — Prob(ωt+1 = j | ωt = i) = Tij

➢ Goal: given the s-mode Σ, construct an r-mode (r ≪ s) MJS

Σ̂ :=

{
x̂t+1 = Âω̂t

x̂t + B̂ω̂t
ut

ω̂0, ω̂1, . . . ∼ Markov Chain(T̂)

with mode dynamics {Âi, B̂i}r
i=1 and Markov matrix T̂∈Rrxr.

Approach

Approximation Guarantees
1. Assumption and Preliminaries

Assumption (Inner-cluster Similarity). Among the clusters {Ω̂k}r
k=1, assume

for any cluster Ω̂k and any modes i, i′ ∈ Ω̂k

∥Ai − Ai′∥ ≤ ϵA, ∥Bi − Bi′∥ ≤ ϵB, ∥T(i, :) − T(i′, :)∥1 ≤ ϵT

for some ϵA, ϵB, ϵT > 0.
Definition 1 (Stability for MJS). For Σ, define

ξ(Σ):=joint spectral radius({Ai}s
i=1), ρ(Σ):=spectral radius(A)

where A is a block matrix with the ij-th block given by Tji · (Aj ⊗ Aj). Then
uniform stability ⇐⇒ ξ(Σ) < 1, mean-square stability ⇐⇒ ρ(Σ) < 1

3. Trajectory Difference

Theorem 2 (Trajectory Difference). Suppose x0 = x̂0, ut ≤ ū, and ω̂t = k
whenever ωt ∈ Ω̂k (mode synchrony between Σ and Σ̂). Let ρ0 := (1 + ρ(Σ))/2,
ξ0 = (1 + ξ(Σ))/2, and B̄ := maxi ∥Bi∥.
➢ When ξ(Σ) < 1 (uniform stability), ϵA ≤ 1−ξ(Σ)

2κ , and ϵB ≤ B̄,

∥xt − x̂t∥ ≤ tξt−1
0 κ2∥x0∥ϵA + 2(1 + tξt

0)κ2B̄ū

1 − ξ0
ϵA + κū

1 − ξ0
ϵB.

➢ When ρ(Σ) < 1 (mean-square stability), ϵA ≤ min{Ā, 1−ρ(Σ)
6τĀ∥T∥}, and ϵB ≤ B̄,

E[∥xt − x̂t∥] ≤ 4
√

nsτ

√
tρt−1

0 Ā∥T∥∥x0∥
√

ϵA

+ 8
√

nsB̄τ ū

(1 − ρ0)2

(√
Ā∥T∥

√
ϵA +

√
ϵB

)
.

2. Stability Difference

Theorem 1 (Stability Difference). For Σ and Σ̂, we have

|ξ(Σ̂) − ξ(Σ)| ≤ κϵA

|ρ(Σ̂) − ρ(Σ)| ≤ τ ((2Ā + ϵA)ϵA + Ā2ϵT)

where Ā = maxi ∥Ai∥, and constants κ, τ are bounded and depend on the transient
responses of the MJS.

4. LQR Controller Suboptimality

Definition 2 (MJS-LQR). Given Σ, positive definite cost matrices Q and R,
define the following quadratic cost w.r.t. controllers K = {Ki}s

i=1,

JΣ(K) := lim sup
T→∞

E
[ 1
T

T∑
t=0

x⊺
t Qxt + u⊺

t Rut

]
s.t. xt ∼ Σ with ut = Kωt

xt

Let J⋆ = minK JΣ(K) denote the optimal cost.
Theorem 3 (LQR Suboptimality). Suppose Σ is mean-
square stabilizable with additive noise N (0, σ2

wI). Design
controllers using Σ̂ and deploy them to Σ:

{K̃k}r
k=1 := arg min{K̃k}r

k=1
JΣ̂({K̃k}r

k=1),
K̂ := {K̂i}s

i=1 s.t. K̂i := K̃k if i ∈ Ω̂k,

and let J = JΣ(K̂). Then for small enough ϵA, ϵB, and ϵT,
J − J⋆ ≤ Cσ2

w(ns)1.5(ϵA + ϵB + ϵT)2

where C is some problem dependent constant.

Experiments
➢ Trajectory Difference

● Number of modes: s = 30 (original), r = 3 (after reduction)
● For i = 1, . . . , 10, Ai = [cos(θi), − sin(θi); sin(θi), cos(θi)] with θi ∼ π

16unif(0.9, 1.1);
● For i = 11, . . . , 20, Ai = [ai, 0; 0; 1] with ai ∼ unif(0.9, 1)
● For i = 21, . . . , 30, Ai = [1, 0; 0; ai] with ai ∼ unif(0.9, 1)
● Bi = 0, T = (1s1⊺

s/s + Is)/2, x0 = [1, 1]⊺ -1 0 1
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➢ LQR Controller Suboptimality
● Number of modes: s = 100 (original), r = 4 (after reduction)
● n = 10, p = 5, σw = 0.1, x0 = 1
● Randomly generated dynamics Σ and cost matrices Q and R.
● Controllers are solved via Riccati iterations with tolerance 10−12.
● The plot shows the normalized suboptimality J−J⋆

J⋆ vs. ϵT, ϵA = ϵB aver-
aged over 100 runs of experiments.
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Summary
➢ For more details and results, see the complete version

(https://arxiv.org/abs/2205.02697).
● clustering performance guarantees
● weaker assumptions
● stronger trajectory difference guar-

antees w/o mode synchrony
➢ Future work

● Extend to the case when the output is only par-
tially observed, i.e. yt = Cωt

xt for some measure-
ment matrices {Ci}s

i=1.
● Consider the case when there can be infinite num-

ber of modes.
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