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Abstract
While Markov jump systems (MJSs) are more appropriate than LTI systems in terms of modeling
abruptly changing dynamics, MJSs (and other switched systems) may suffer from the model com-
plexity brought by the potentially sheer number of switching modes. Much of the existing work
on reducing switched systems focuses on the state space where techniques such as discretization
and dimension reduction are performed, yet reducing mode complexity receives few attention. In
this work, inspired by clustering techniques from unsupervised learning, we propose a reduction
method for MJS such that a mode-reduced MJS can be constructed with guaranteed approximation
performance. Furthermore, we show how this reduced MJS can be used in designing controllers
for the original MJS to reduce the computation cost while maintaining guaranteed suboptimality.
Keywords: Markov Jump Systems, System Reduction, Clustering

1. Introduction

As the control and machine learning communities build tools to model ever more complex dynam-
ical systems, it will become increasingly important to identify redundant aspects of a model and
remove them using various unsupervised learning techniques. State dimensionality reduction has
long been common in control systems, using PCA and similar techniques. In this paper we consider
the setting where switched systems have redundant modes, and we apply clustering – the other most
fundamental unsupervised learning technique – to remove redundancies.

Switched systems generalize time-invariant systems and can be used to model abrupt changes
in the environment (e.g. weather and road surfaces), controlled plants (e.g. functioning statuses
of different components), disturbances, or even control goals (e.g. cost functions in the optimal
control). Switched system models are used in a variety of applications including controlling a
Mars rover exploring an unknown heterogeneous terrain, solar power generation, investments in
financial markets, and communications with packet losses Blackmore et al. (2005); Cajueiro (2002);
Loparo and Abdel-Malek (1990); Svensson et al. (2008); Ugrinovskii and Pota (2005); Sinopoli
et al. (2005); Truong et al. (2021). Using a pool of modes and allowing them to switch brings
versatility but also new challenges: the number of modes can grow easily during modeling. For
example, for controlled plants composed with multiple components, if we model each combination
of health statuses, e.g. working and faulty, of all components as a mode, then the number of modes
grow exponentially with the number of components. Even analysis such as stability verification

* The full version with extended proofs are provided in Du et al. (2022a).
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can become computationally intractable when the number of components is large, thus finding a
systematic and theoretically guaranteed way to reduce the number of modes in switched systems is
imperative.

Existing work on (switched) system reduction mainly focuses on reducing the state dimension
(Zhang et al., 2003) or constructing finite abstractions for the continuous state space Zamani and
Abate (2014). Reducing the mode complexity, however, is still an uncharted field. A closely related
line of research is the reduction of hidden Markov models (HMM) (Abate et al., 2014; Lun et al.,
2018) and Markov chains (Zhang and Wang, 2019; Bittracher and Schütte, 2021), but HMM and
Markov chain models are much simplified versions of switched dynamical models.

In this work, we study how one can perform mode reduction for Markov jump systems (MJS),
a class of switched systems with the dynamics of mode switching governed by a Markov chain, and
each individual mode characterized by an linear time-invariant (LTI) model. Our main contributions
are the following:

• As an extension of Du et al. (2019), by treating the dynamics of each mode as features, we
propose a clustering-based method that constructs a mode-reduced MJS.

• The reduced MJS is shown to provably well approximate the original MJS in terms of the
trajectory difference.

• We show that LQR controllers designed with the reduced MJS can achieve guaranteed per-
formance on the original MJS while significantly reducing the computational cost.

Our work adds a new dimension, i.e., reduction of modes, to the research of switched system re-
duction. This framework can be generalized to other problems such as stability analysis, robust and
optimal control, invariance analysis, partially observed systems, etc. Other than constructing and
analyzing the reduced MJS, the technical tools we develop in this work regarding perturbations can
be applied to cases when there are model mismatches, e.g. system estimation errors incurred when
dynamics are learned in identification or data-driven adaptive control as in Sattar et al. (2021).

2. Related Work

The work on reduction for stochastic switched systems can be roughly divided into three categories:
bisimulation, symbolic abstraction, and order reduction.
Bisimulation: To evaluate the equivalency between two stochastic switched systems, notions of
(approximate) probabilistic bisimulation are proposed in (Larsen and Skou, 1991; Desharnais et al.,
2002, 2004). Approximation metrics from different perspectives (Abate, 2013) are developed to
compare two systems, e.g. one(multi)-step transition kernels (Abate et al., 2011) and trajectories
(Girard and Pappas, 2007; Tkachev and Abate, 2014; Julius and Pappas, 2009). Unlike existing
work which typically defines the exact and approximate bisimulation on the state space, our work
takes the mode space into consideration. Existing work on bisimulation is mainly conceptual and
more for analysis purposes: they focus on developing bisimulation notions and approximation met-
rics, and “the majority of the examined approaches assume to be given two similar processes to
compare, only a few put forward procedures for model approximation or abstraction with quantified
quality” (Abate, 2013). This shortcoming is the work on abstractions address.
Symbolic Abstraction: Given a system with continuous state space, abstraction (Alur et al., 2000)
considers discretizing the state space and then constructing a finite state symbolic model, which can
be used as a surrogate for model verification (Clarke Jr et al., 2018; Kurshan, 2014) or controller
synthesis (Maler et al., 1995). The work on abstraction for stochastic hybrid systems starts with the
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autonomous cases. Under uniform discretization , Abate et al. (2010, 2011) provide approximation
guarantees in terms of the discretization width. An adaptive partition scheme is proposed in Soud-
jani and Abate (2011), which mitigates the curse of dimensionality suffered by uniform sampling.
Since the systems under consideration are autonomous, these work mainly serves verification pur-
poses, but fall short toward controller synthesis goals. Zamani and Abate (2014) addresses this by
allowing inputs in the systems. The idea of partitioning the continuous state space is similar to our
work except that our partition is performed on the mode space, a.k.a. the discrete state space in
hybrid systems, which provides a new yet closely related dimension to existing abstraction work.
Order Reduction: Another important line of research on system reduction is order reduction
(Gugercin and Antoulas, 2004), where one seeks to reduce the dimension of the state space un-
der certain criterion. With the help of linear matrix inequalities (LMIs), various methods have been
applied for MJS, including H∞ reduction (Zhang et al., 2003), balanced truncation (Kotsalis and
Rantzer, 2010), and H2 reduction (Sun and Lam, 2016), etc. Order reduction is also applied to
models with adversarial conditions such as time-varying delay (Zhang et al., 2015a) and partial
transition probability observation (Zhang et al., 2015b; Shen et al., 2019).

3. Preliminaries and Problem Setup

For a matrix E, E(i, :) denotes the ith row of E, and E(i, j:k) denotes the ith row preserving only
the jth to kth columns. For any index set A, E(i, A) denotes the ith row preserving columns given
by A. Let σi(E) (λi(E)) denote its ith largest singular (eigen) value. For any s ∈ N, we let
[s] := {1, 2, . . . , s}. We say Ω1:r := {Ω1, . . . ,Ωr} is a r-cluster partition of [s] if

⋃r
i=1Ωi = [s],

Ωi
⋂

Ωj = ϕ for any i ̸= j, and Ωi ̸= ϕ. We let Ω(i) denote the cluster with ith largest cardinality.
For a sequence of variables X0, X1, . . . , XN , let X0:N := {Xi}Ni=0.

3.1. Preliminaries
In this work, we consider Markov jump systems (MJSs) with dynamics given by

Σ := {xt+1 = Aωtxt +Bωtut, ωt ∼ Markov Chain(T)} (1)
where xt ∈ Rn and ut ∈ Rp denote the state and input at time t. The switching nature of the
dynamics is characterized by s modes {Ai,Bi}si=1 where Ai ∈ Rnxn and Bi ∈ Rnxp are state and
input matrices for mode i. The active mode at time t is indexed by ωt ∈ [s], and the mode switching
sequence ω0:t follows a Markov chain with Markov matrix T ∈ Rsxs, i.e., P(ωt+1 = j | ωt = i) =
T(i, j). We assume the Markov chain T is ergodic. By properties of ergodicity, T has a unique
stationary distribution π ∈ Rs, and we let πmax and πmin denote the largest and smallest element in
π. In the remaining of the paper, we use Σ := MJS(A1:s,B1:s,T) to denote the groundtruth MJS
in (1) that we want to study, and similarly use notation MJS(·, ·, ·) to parameterize any MJS with
expressions given in (1). We introduce the following two special types of Markov chain, which are
closely tied to the main focus of this work.
Definition 1 (Lumpability and Aggregatability (Buchholz, 1994)) Markov matrix T is lumpable
w.r.t. partition Ω1:r on [s] if for any k, l ∈ [r], and i, i′ ∈ Ωk,

∑
j∈Ωl

T(i, j) =
∑

j∈Ωl
T(i′, j), . As

a special case, it is further aggregatable if T(i, :) = T(i′, :).
Lumpability of a Markov chain coincides with the definition of probabilistic bisimulation in Deshar-
nais et al. (2002), which describes an equivalence relation on [s], i.e., two members are equivalent
if they belong to the same cluster. For a Markov chain T that is lumpable with respect to partition
Ω1:s, we use ζt ∈ [r] to index the active cluster at time t, i.e., ζt = i if and only if ωt ∈ Ωi, and use
ζ0:t to denote the active cluster switching sequence.
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Figure 1: Illustration of reduction under mode-reducibility condition.
.3.2. Mode-reducibility Conditions

We first define an equivalence relation between two MJSs with different number of modes via a
surjection from each mode of the larger MJS to the smaller one, which is characterized by a partition.
This extends the bijection idea in Julius and Pappas (2009); Zhang et al. (2003), which can only be
used to compare two switched systems with the same number of modes.

Definition 2 (Equivalence between MJSs) Consider two MJSs Σ1 and Σ2 with the same state
and input dimensions n, p, but different number of modes s1 and s2 respectively. WLOG, assume
s1 > s2. Let {x(1)

t ,u
(1)
t , ω

(1)
t } and {x(2)

t ,u
(2)
t , ω

(2)
t } denote their respective state, input, and mode

index. Σ1 and Σ2 are equivalent if there exists a partition Ω1:s2 on [s1] such that Σ1 and Σ2 have
the same transition kernels, i.e., for any t, any k, k′ ∈ [s2], any x,x′ ∈ Rn, and any u ∈ Rp

P
(
ω
(1)
t+1∈Ωk′ ,x

(1)
t+1=x′

∣∣∣ ω(1)
t ∈Ωk,x

(1)
t =x,u

(1)
t =u

)
= P

(
ω
(2)
t+1=k′,x

(2)
t+1=x′

∣∣∣ ω(2)
t =k,x

(2)
t =x,u

(2)
t =u

)
. (2)

If one views the discrete mode and the continuous state {ω(1)
t ,x

(1)
t } as a hybrid state (Abate et al.,

2011), then Definition 2 generalizes Definition 1 from Markov chains to MJSs. A sufficient condi-
tion in terms of the dynamics parameters, which guarantees that an MJS can be reduced to a smaller
MJS with equivalency between them, is given by the following.

Definition 3 (Mode-reducibility Condition) Σ is mode-reducible with respect to a partition Ω1:r,
if its Markov chain T is lumpable with respect to Ω1:r, and modes within the same cluster have the
same dynamics, i.e., for any k ∈ [r], any i, i′ ∈ Ωk, we have Ai = Ai′ , Bi = Bi′ .

If this condition holds for Σ, we construct a mode-reduced MJS given by Σ̆:=MJS(Ă1:r, B̆1:r, T̆)
such that for any k, l ∈ [r], any i ∈ Ωk, Ăk = Ai and B̆k = Bi, T̆ ∈ Rrxr with T̆(k, l) =∑

j∈Ωl
T(i, j), which is illustrated in Fig. 1. Let {x̆t, ŭt, ω̆t} denote the state, input, and mode

index for the reduced Σ̆. Then, the following result shows that Σ̆ and Σ are equivalent according to
Definition 2. This is more of a teaser result for the ideal mode-reducible case, and formal problems
regarding practical cases when Σ is not mode-reducible will be formulated later.

Proposition 4 Suppose Σ is mode-reducible and Σ̆ is constructed as above. Consider the case
when the two MJSs have (i) initial mode distributions satisfy P(ω0 ∈ Ωk) = P(ω̆0 = k) for all
k ∈ [r], (ii) the same initial states (x0 = x̆0), and (iii) the same input sequences (u0:t−1 = ŭ0:t−1).
Then, these two MJSs have the same mode and state transition kernels, i.e., P(ωt ∈ Ωk,xt=x) =
P(ω̆t=k, x̆t=x) for all t, all k ∈ [r] and x ∈ Rn. Particularly, there exists a special type of reduced
Σ̆ such that the modes are synchronized: for all t, ω̆t = ζt. In this case, x̆t = xt for all t.
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Proposition 4 first shows the equivalency between Σ and Σ̆ for the transition kernels, then if cer-
tain synchrony, exists between ζ0:t and ω̆0:t, the equivalency also exists for the trajectories. The
condition ω̆t = ζt in Proposition 4 essentially establishes a coupling between the Markov chains
ω0:t and ω̆0:t such that P(ωt ∈ Ωk, ω̆t = k) = P(ωt ∈ Ωk) = P(ω̆t = k). Establishing coupling
between the stochastic systems usually allows for stronger equivalency and approximation metrics
result. Similar coupling scheme is implicitly used in Julius and Pappas (2009); Zhang et al. (2003);
an optimal coupling by minimizing Wasserstein distance is discussed in Tkachev and Abate (2014);
and a weaker coupling using the idea of HMM is discussed in Shen et al. (2019).

In Definition 3 and Proposition 4, one can view {ωt,xt} ∈ [s] × Rn as a hybrid state, then T
being lumpable guarantees the existence of an equivalence relation in the discrete domain [s], while
state/input matrices being the same guarantees this in the continuous domain Rn.

3.3. Problem Formulation

The mode-reducibility condition in Definition 3 and Proposition 4 provide principles under which
one could construct a reduced MJS that is equivalent to the original one. Though seemingly strong,
the mode-reducibility condition may hold approximately in many practical scenarios that allow for
mode reduction. For example, in hybrid power systems, solar panels that are geographically close
tend to have similar levels of solar radiation thus similar power dynamics. Hence, we would like
to study the following: suppose the mode-reducibility condition holds approximately, how can we
construct a reduced MJS? From here, we formulate the following two concrete problems.

Problem P1 (Lumpable Case) Assume the dynamics of Σ=MJS(A1:s,B1:s,T) are known. Sup-
pose there exists a partition Ω1:r on [s] such that: for any Ωk, Ωl and any i, i′ ∈ Ωk,

∥Ai −Ai′∥F ≤ ϵA, ∥Bi −Bi′∥F ≤ ϵB, (3)

1

2

∑
l∈[r]

∣∣∣∣ ∑
j∈Ωl

T(i, j)−
∑
j∈Ωl

T(i′, j)

∣∣∣∣ ≤ ϵT. (4)

Then, we seek to estimate the partition Ω1:r, construct a reduced MJS, and provide guarantees on
the behavior difference incurred by the reduction.

Throughout this work, we will refer to ϵA, ϵB, and ϵT as perturbations (that lead to violation of
mode-reducibility condition in Definition 3 and prevents the existence of Σ̆ as in Proposition 4).
For the special aggregatable case, we separately formulate a similar problem in Problem P2. Even
though solutions to P1 automatically solve P2, as we shall see in the next section, algorithm theo-
retical guarantees for P2 require milder and more interpretable assumptions than P1.

Problem P2 (Aggregatable Case) In Problem P1, replace (4) with ∥T(i, :)
⊺ −T(i′, :)

⊺∥1 ≤ ϵT.

In P2, Ai,Bi, and T(i, :) can be thought of as features and provide the position for mode i in the
feature space, and pairwise distances between all the modes reflect the partition Ω1:r. The recovery
of the partition Ω1:r resembles the classical clustering problems studied in the machine learning
community. However, this resemblance does not directly apply to the weak lumpability condition
(4) in P1, as the similarity in the transition probabilities is encoded by the partition Ω1:r. This makes
the already non-convex clustering problem even more challenging.

In the aforementioned hybrid power system example where the geographical closeness serves as
expert knowledge, one may be tempted to naively attempt construction of a small scale system from
the beginning, but this makes it impossible to know how well it approximates the true dynamics.
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Our approach would be to instead approximate the dynamics as well as possible with many modes
and then use clustering to reduce the overall system. Hence, other than constructing a reduced MJS,
we also seek to provide guarantees on the behavior difference and performance degradation incurred
by the reduction. These guarantees play a critical role in safety-critical environments.

4. Clustering-based Mode Reduction for MJS

Algorithm 1: System Reduction for MJS
Input: A1:s,B1:s,T, r,π, αA, αB, αT

1 Construct feature matrix Φ:
2 case Problem P2 do
3 Φ(i, :) = [αAvec(Ai)

⊺, αBvec(Bi)
⊺, αTT(i, :)], ∀i ∈ [s]

4 case Problem P1 do
5 H = diag(π) 1

2Tdiag(π)− 1
2

6 Wr ← top r left singular vectors of H
7 Sr = diag(π)− 1

2Wr

8 Φ(i, :) = [αAvec(Ai)
⊺, αBvec(Bi)

⊺, αTSr(i, :)], ∀i ∈ [s]

9 Ur ← top r left singular vectors of Φ
10 Solve k-means problem: Ω̂1:r, ĉ1:r = argminΩ̂1:r,ĉ1:r

∑
k∈[r]

∑
i∈Ω̂k

∥Ur(i, :)− ĉk∥2

11 Construct Σ̂, ∀k, l ∈ [r]

Âk = 1
|Ω̂k|

∑
i∈Ω̂k

Ai, B̂k = 1
|Ω̂k|

∑
i∈Ω̂k

Bi, T̂(k, l) = 1
|Ω̂k|

∑
i∈Ω̂k,j∈Ω̂l

T(i, j)

Output: Σ̂ : MJS(Â1:r, B̂1:r, T̂)

The clustering-based MJS reduction method is presented in Algorithm 1. We treat the esti-
mation of partition Ω1:r essentially as a mode clustering problem with dynamics matrices Ai, Bi

and transition distribution T(i, :) serving as features for mode i. We first construct feature ma-
trix Φ from Line 2 to Line 8, with Φ(i, :) denoting the features of mode i. For the aggregatable
case in Problem P2, we simply stack the vectorized Ai, Bi and T(i, :), and use αA, αB, αT to
denote their weights respectively. One way to choose these weights is to use a normalization, e.g.
αA = 1

maxi ∥Ai∥ , so that these three features would have the same scales. By the definition of ag-
gregatibility, similarities of T(i, :) among different modes are direct indicators for the groundtruth
partition Ω1:r. For the lumpable case, however, this is not an option since two modes belonging to
the same cluster can still have different transition probabilities T(i, :) even if ϵT = 0. According to
(4), the groundtruth partition Ω1:r is only embodied in the mode-to-cluster transition probabilities∑

j∈Ωl
T(i, j) constructed using the groundtruth partition itself. This leaves us in a “chicken-and-

egg” dilemma. To deal with this, from Line 5 to 8, we compute the first r left singular vectors Wr

of matrix diag(π)
1
2Tdiag(π)−

1
2 , and then weight it by diag(π)−

1
2 to obtain matrix Sr ∈ Rsxr,

which is used to construct features in Φ for the lumpable case. We will later justify using Sr as
features by showing row similarities in Sr reflect the partition under certain assumptions.

With the feature matrix Φ, to recover the partition, we resort to k-means: in Line 10, k-means
is applied to the first r left singular vector Ur of Φ. Extracting the low-rank structure Ur de-noises
the impact of the perturbations. Based on the k-means solution Ω̂1:r, we construct the reduced Σ̂
by averaging modes within the same estimated cluster. When one picks αA=αB=0, i.e only the
Markov matrix T is used to cluster the modes, our clustering scheme under the aggregatable case
P2 is equivalent to the one in Zhang and Wang (2019). The lumpable case P1, on the other hand, is
based on the preliminary analysis in Meilă and Shi (2001).
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4.1. Theoretical Guarantees for Clustering

We assume a (1 + ϵ) solution (Lei et al., 2015) to the k-means problem in Algorithm 1 can be ob-
tained, i.e.,

∑
k∈[r],i∈Ω̂k

∥Ur(i, :)− ĉk∥2 ≤ (1 + ϵ)minΩ′
1:r,c

′
1:r

∑
k∈[r],i∈Ω′

k
∥Ur(i, :)− c′k∥2. We

later showd how ϵ affects the overall clustering performance. To evaluate the performance of parti-

tion estimation, we define misclustering rate (MR) as MR(Ω̂1:r) = minh∈H
∑

k∈[r]
|{i:i∈Ωk,i/∈Ω̂h(k)}|

|Ωk| ,

where H is the set of all bijections from [r] to [r] so that the comparison finds the best cluster label
matching. We define the following averaged feature matrix Φ̄ based on the underlying partition
Ω1:r: for all i ∈ [s] (suppose i ∈ Ωk for some k ∈ [r]), Φ̄(i, :) = 1

|Ωk|
∑

i′∈Ωk
Φ(i′, :). By con-

struction, there are up to r unique rows in Φ̄, hence rank(Φ̄) ≤ r. We first present the clustering
guarantee for Problem P2, i.e., the aggregatable case.

Theorem 5 Consider Problem P2 and Algorithm 1. Suppose Ω̂1:r is a (1 + ϵ) k-means solution.

Let ϵAgg:=αAϵA +αBϵB +αTϵT. Then, if rank(Φ̄) = r and ϵAgg ≤
σr(Φ̄)

√
|Ω(r)|+|Ω(1)|

8
√

s(2+ϵ)|Ω(1)|
, we have

MR(Ω̂1:r) ≤
64(2 + ϵ)s

σ2
r (Φ̄)

ϵ2Agg. (5)

Additionally, if ϵAgg ≤ σr(Φ̄)

8
√

s(2+ϵ)|Ω(1)|
, then MR(Ω̂1:r) = 0.

We see the misclustering rate can be bounded by the inner-cluster spread ϵAgg when it is small
enough. As for the inter-cluster distance, i.e., dissimilarity of Ai,Bi and T(i, :) of modes in dif-
ferent clusters, it affects the guarantee through the term σr(Φ̄). This is because when two modes
belonging different clusters have similar features, their rows in the averaged feature matrix Φ̄ will
also be similar, which could lead to small σr(Φ̄) and larger error bound.

The clustering guarantee for the lumpable case in Problem P1 is more involved than the ag-
gregatable case. We first provide a few more background notions and definitions that can help the
exposition. We say a Markov matrix T is reversible if there exists a distribution π ∈ Rs such
that π(i)T(i, j) = π(j)T(j, i) for all i, j ∈ [s]. This condition for reversibility translates to
diag(π)T = T

⊺diag(π) when T is ergodic with stationary distribution π. For a reversible Markov
matrix that is also lumpable, we have the following property.
Lemma 6 (Appendix A in Meilă and Shi (2001)) For a reversible Markov matrix T that is also
lumpable with respect to partition Ω1:r, it is diagonalizable with real eigenvalues. Let S ∈ Rsxs

denote an arbitrary eigenvector matrix of T. Then, there exists an index set A ⊆ [s] with |A| = r
such that for all k ∈ [r], for all i, i′ ∈ Ωk, we have S(i,A) = S(i′,A).

We say T in Lemma 6 has informative spectrum if A = [r] and |λr(T)| > |λr+1(T)|, which
implies that the uniquely defined r leading eigenvalues have eigenvectors that carry partition infor-
mation in Lemma 6. For lumpable Markov matrices, we define the ϵT-neighborhood of T:

L(T,Ω1:r, ϵT) :=

{
T0 ∈ Rsxs : T0 is Markovian,

∀k, l ∈ [r], ∀i ∈ Ωk,
∑
j∈Ωl

T0(i, j) =
1

|Ωk|
∑

i′∈Ωk,j∈Ωl

T(i′, j), ∥T0 −T∥∞ ≤ ϵT

}
. (6)

Then we provide the clustering guarantee for the lumpable case.

Theorem 7 Consider Problem P1 and Algorithm 1. Let γ1 :=
∑s

i=2
1

1−λi(T) , γ2 = min{σr(H)−
σr+1(H), 1}, γ3=16γ1

√
πmax∥T∥F

γ2π2
min

, and ϵLmp:=αAϵA + αBϵB + γ3αTϵT. Assume there exists an
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ergodic and reversible T0 ∈ L(T,Ω1:r, ϵT) with informative spectrum. Suppose Ω̂1:r is a (1 + ϵ)

k-means solution. Then, if rank(Φ̄)=r, ϵT≤πmin
γ1

, and ϵLmp ≤
σr(Φ̄)

√
|Ω(r)|+|Ω(1)|

8
√

s(2+ϵ)|Ω(1)|
, we have

MR(Ω̂1:r) ≤
64(2 + ϵ)s

σ2
r (Φ̄)

ϵ2Lmp. (7)

Additionally, if ϵLmp ≤ σr(Φ̄)

8
√

s(2+ϵ)|Ω(1)|
, then MR(Ω̂1:r) = 0.

The difference of using T and Sr to construct features for lumpable and aggregatable cases
is also reflected in the comparison between Theorem 5 and 7. They are almost identical with an
additional γ3 term. This term describes how much the lumpability perturbation ϵT on T affects the
row equalities of its spectrum-related matrix Sr in Lemma 6. The assumption on the existence of
T0 with informative spectrum guarantees (i) the partition Ω1:r information is carried by the leading
eigenvectors of T0 as introduced in Lemma 6, and (ii) this information can still be preserved in Sr

as long as T is close to T0. Saying this, the theory for clustering in the lumpable case may not hold
for an arbitrary lumpable T, but only those close to Markov matrices with informative spectra.

5. Approximation Guarantees

With perturbation ϵA, ϵB, ϵT, the reduced Σ̂ may not be equivalent to the original Σ as in Proposition
4. In this case, if certain approximation guarantees can be established, they can serve verification
purposes such as safety (Julius and Pappas, 2009) and invariance (Soudjani and Abate, 2011) eval-
uations. In this section, we show that when Σ is autonomous and stable, the reduced system Σ̂ can
provably well approximate the original system Σ in terms of the trajectory difference ∥xt − x̂t∥.
Note that autonomous MJSs also include MJSs under mode-dependent state-feedback controller
K1:s such that the closed-loop dynamics xt+1 = (Aωt +BωtKωt)xt is autonomous. Autonomous
system reduction is also considered in Abate et al. (2011); Tkachev and Abate (2014); Bian and
Abate (2017). Since we have shown in Theorem 5 and 7 that MR(Ω̂1:r) = 0 when perturbation
ϵA, ϵB, ϵT are small, in the following, we assume Ω1:r = Ω̂1:r for simplicity.

The stability under consideration is the mean-square stability (MSS) that is typically studied
in MJS Costa et al. (2006). We say Σ is mean-square stable (MSS), if there exists Σ∞ such that
limt→∞ E[xtx

⊺
t ]=Σ∞. Define the augmented state matrix A∈Rsn2xsn2

with its ij-th n2×n2 block
given by [A]ij :=T(j, i) · Aj ⊗ Aj , and let ρ denote the spectral radius of A. Then, under the
autonomous case, i.e., ut = 0, Σ being MSS is equivalent to ρ < 1. Furthermore, we define
τ := supk∈N ∥Ak∥/ρk, which measures how fast ∥Ak∥

1
k converges to ρ. We let Ā := maxi ∥Ai∥

and ρ0 :=
1+ρ
2 . Then we have the following bounds on the trajectory difference.

Theorem 8 Consider Σ that is autonomous and MSS. Assume Ω̂1:r = Ω1:r in Algorithm 1. Suppose
Σ and Σ̂ have the same initial states, i.e., x0 = x̂0. Mode ω̂t of Σ̂ is synchronous to ωt of Σ, i.e.,
for all t, if ωt ∈ Ωk then ω̂t = k. Then, when ϵA ≤ min{Ā, 1−ρ

6
√
sτĀ
}, we have,

E[∥xt − x̂t∥2] ≤ 12nstρt−1
0 τ2Ā∥x0∥2ϵA. (8)

We require the synchrony between the mode sequences ω0:t−1 and ω̂0:t−1 so that evaluating
∥xt − x̂t∥ is meaningful as we discussed in Section 3.2. When ωt is observed while xt is not,
by forcing mode synchrony, we can estimate xt with x̂t. Since ρ<1 due to the MSS of Σ, we
know ρ0<1, which implies that the trajectory difference ∥xt−x̂t∥ converges to 0 exponentially
with t. Note that this also implies that Σ̂ is MSS, as otherwise the difference would not converge.
Proposition 4 provides a the sanity check for Theorem 8 that when ϵA = 0, we have xt = x̂t.
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6. Controller Design with Case Study on LQR

A typical class of controllers for MJS is known to be mode-dependent. A mode-dependent controller
is essentially a collection of individual controllers such that each mode is associated with one,
and the deployed controller switches with corresponding modes. With the reduced MJS Σ̂, we
can design mode-dependent controller K̂1:r for Σ̂ and then associate every mode i in Σ with K̂k

if i ∈ Ω̂k. Since Σ̂ has a smaller scale than Σ, the computation cost may be reduced. In the
following, with the classical infinite time linear quadratic regulator (LQR) problem as an example,
we showcase the implementation of this idea and provide its suboptimality guarantees.

In the infinite LQR problems, given positive definite cost matrices Q and R, we define quadratic
cost JT = E

[∑T−1
t=0

(
x
⊺
tQxt + u

⊺
tRut

)
+ x

⊺
TQxT

]
. The goal is to design inputs to minimize the

infinite time average cost lim supT→∞
1
T JT under Σ. The optimal solution is well studied in Costa

et al. (2006). Mode-dependent controllers K1:s is obtained by solving s coupled discrete algebraic
Riccati equations each of which is parameterized by Ai,Bi,T(i, :),Q,R and resembles the Riccati
equation used in LQR for LTI systems. Then, at time t, the optimal input is given by ut = Kωtxt.

To design controllers with the reduced Σ̂, we can first compute controller K̂1:r by solving LQR
problem with Σ̂ as the dynamics. This requires solving r coupled Riccati equations each of which is
parameterized by Âi, B̂i, T̂(i, :),Q,R. To apply K̂1:r to the original Σ, we simply let ut = K̂kxt

if ωt = k. Since the number of coupled Riccati equations is the same as the number of modes, the
computation cost for Σ is O(s) while only O(r) for Σ̂, thus the saving is prominent when r ≪ s.
Additionally, we have the following suboptimality guarantees.

Theorem 9 Assume system Σ is mean square stabilizable and has additive Gaussian process
noise N (0, σ2

wIn) that is independent of the mode switching. Assume Ω̂1:r = Ω1:r in Algorithm
1. Let J⋆ and Ĵ respectively denote the infinite time average cost incurred by the optimal con-
troller K1:s and controller K̂1:r (at time t, ut = K̂kxt if ωt ∈ Ω̂k). Then, there exists con-
stant ϵ̄A,B, ϵ̄T, CA,B, and CT, such that when max{ϵA, ϵB} ≤ ϵ̄A,B and ϵT ≤ ϵ̄T, we have
Ĵ − J⋆ ≤ σ2

w(CA,Bmax{ϵA, ϵB}+ CTϵT)
2.

Having additive noise means the MJS dynamics in (1) becomes xt+1 = Aωtxt +Bωtut +wt

where wt ∼ N (0, σ2
wIn). Constants ϵ̄A,B, ϵ̄T, CA,B, and CT only depend on the original Σ and

cost matrices Q and R with the exact expressions provided in Du et al. (2022b).

7. Numerical Experiments

In this section, we present experiment results to evaluate the main results in the paper. System Σ is
randomly generated with desired levels of perturbation ϵA, ϵB, ϵT under the uniform partition Ω1:r

on [s], i.e., |Ωi|=|Ωj | for any i, j∈[r]. We first evaluate the clustering performance of Algorithm 1.
Then, we evaluate the performance of LQR controller designed with the reduced MJS Σ̂.

To evaluate Algorithm 1, we fix n = 5, p = 3, r = 4 and record the average clustering error
CE = minh∈H

∑
k∈[r] |{i : i ∈ Ωk, i /∈ Ω̂h(k)}|, i.e., the number of misclustered modes under the

best cluster labeling, over 100 runs. Figure 2 presents the clustering performances under different
number of modes s and perturbation ϵA, ϵB and ϵT. In Figure 2(a), we set perturbation ϵA = ϵB and
hyper-parameters αA = 1

maxi ∥Ai∥ , αB = 1
maxi ∥Ai∥ , and αT = 0 in Algorithm 1. The clustering

error goes up with increasing s and ϵA, ϵB, and we can indeed see when the perturbation is small
(< 0.5), there are no misclustered modes. The impact of ϵT is shown in Figure 2(b) (lumpable case
P1) and 2(c) (aggregatable case P2), where we set αA = αB = 0, αT = 1.

9
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Figure 2: Clustering performance vs (a) ϵA = ϵB; (b) ϵT (lumpable case P1); (c) ϵT (aggregatable case P2)

Next we implement the idea of designing LQR controllers for the original Σ through the reduced
Σ̂ as discussed in Section 6. We let r = 3, n = 10, p = 5, process noise variance σ2

w = 0.1, initial
state x0 = 1, and perturbation ϵA = ϵB = ϵT. In Figure 3(a), the finite time LQR with horizon
T = 500 is considered, and the plot shows time-averaged sub-optimality (Ĵt − J⋆

t )/t averaged
over 4000 runs . At t = 500, since the behavior has reached stationary state, (Ĵt − J⋆

t )/t can be
viewed as the infinite time suboptimality Ĵ − J⋆ discussed in Theorem 9. We can easily see the
trend that larger perturbations result in larger suboptimality. Figure 3(b) shows the time to compute
controllers via Riccati iterations using Σ and Σ̂. We see when s is large, Σ needs significantly
more time than Σ̂. Since the optimal infinite time LQR controllers also can be obtained through
Riccati iterations until convergence, on each curve we use circles to mark the time needed when the
controller difference between two adjacent iterations falls below 10−12.
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Figure 3: Suboptimality and computation time evaluation of LQR controllers designed with the reduced Σ̂

8. Conclusion and Future Work

In this work, we propose a clustering-based method that reduces the mode complexity of an MJS.
The reduced MJS provably approximates the original MJS in terms of trajectory difference and
controller optimality. Several potential extensions include: (i) stronger approximation metrics that
allow for inputs; (ii) stability of the reduced MJS; (iii) partial observation case, i.e., the state xt is
observed through yt = Cωtxt for some mode-dependent output matrices C1:s.
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Appendix A. Proof for Clustering Results

We first provide several supporting lemmas. The first result provides a perturbation result for left
singular vector space.

Lemma 10 (Singular Vectors Perturbation Bound) Consider two arbitrary matrices Φ̄,Φ ∈
Rsxq. Let Ū,U ∈ Rsxr respectively denote the top-r left singular vectors of Φ̄ and Φ with
Ū

⊺
Ū = U

⊺
U = Ir. Then

min
O∈O(r)

∥ŪO−U∥F ≤
2
√
2∥Φ̄−Φ∥F

σr(Φ̄)− σr+1(Φ̄)
, (9)

where O(r) denotes the orthogonal group with dimension r, i.e., the set of all r-dimensional or-
thonormal matrices, and σr(Φ̄) denotes the rth largest singular value of Φ̄.

Proof One can simply see this by combining Lemma 10 (which can be easily shown to hold for
Frobenius norm as) and Lemma 11 in Du et al. (2019). Note that we need to replace the spectrum
in Lemma 10 of Du et al. (2019) with Frobenius norm to complete this proof, and it is easy to show
Lemma 10 of Du et al. (2019) also holds for Frobenius norm.

Note that the basis for a subspace is only unique up to rotation transformation, hence when we
study the difference of subspace, we consider the rotation that gives the best match between their
corresponding basis. The next result says if a matrix has certain columns being identical, then its
left singular vectors share the same identity properties.

Lemma 11 (Lemma 12 in Du et al. (2019)) Consider a matrix Φ̄ ∈ Rsxq and a partition Ω1:r on
[s] such that for any i, i′ ∈ Ωk, Φ̄(i, :) = Φ̄(i′, :). Assume rank(Φ̄) = r. Let Ū ∈ Rsxr denote the
top-r left singular vectors of with Ū

⊺
Ū = Ir. Then for any i ∈ Ωk and j ∈ Ωl,

∥Ū(i, :)− Ū(j, :)∥ =

{
0 if k = l√

1
|Ωk| +

1
|Ωl| if k ̸= l

. (10)

This result says, in the clustering analysis, if one has no idea of the inter-cluster distance in the
original feature space as given by data matrix Φ̄, the left singular vectors can provide such dis-
tances, and the distances only depend on the cluster sizes. This itself is double-edged: no matter
how close two clusters are, their corresponding rows in the left singular vectors are fixed as in (10);
and when certain rows of different clusters are linearly dependent (rank assumption is violated),
no matter how faraway two clusters are, this result will not hold. The differences in left singu-
lar vectors decrease with the cluster size, on the bright side, in square root sense. Another choice
is matrix Ũ := Ūdiag([σ1(Φ̄), . . . , σr(Φ̄)]), i.e., the projection of Φ onto its top-r right singu-
lar vector space, and in this case, (10) gives σr(Φ̄)

√
|Ωk|−1 + |Ωl|−1 ≤ ∥Ũ(i, :)− Ũ(j, :)∥ ≤

σ1(Φ̄)
√
|Ωk|−1 + |Ωl|−1 if k ̸= l and 0 otherwise.

The next lemma provides a preliminary result on the performance of k-means when it is applied
to a data matrix with feature dimension same as the number of clusters. Note that the matrices
constructed with the top-r left singular vectors in Lemma 10 and Lemma 11 fall into this category.

Lemma 12 (Lemma 5.3 in Lei et al. (2015)) Consider two arbitrary matrices Ū,U ∈ Rsxr with
∆U := ∥U− Ū∥F.. Suppose there exists a partition Ω1:r on [s] such that for any i, i′ ∈ Ωk,
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Ū(i, :) = Ū(i′, :). Define the inter-cluster distance for cluster k as δk := minl∈[r]\k mini∈Ωk,j∈Ωl

∥Ū(i, :)− Ū(j, :)∥. Let {Ω̂1:r, ĉ1:r} be an (1 + ϵ) solution to the k-means problem on U. Then,

when ∆U ≤
mink
√

|Ωk|δk√
8(2+ϵ)

, we have

min
h∈H

∑
k∈[r]

|{i : i ∈ Ωk, i /∈ Ω̂h(k)}| · δ2k ≤ 8(2 + ϵ)∆2
U, (11)

whereH is the set of all bijections from [r] to [r].

Finally, by combining Lemma 10, 11, and 12, we can obtain theoretical guarantee on the per-
formance of k-means when it is applied to the left singular vectors of the data matrix, which is the
key lemma we will use to show Theorem 5 and Theorem 7.

Lemma 13 (Approximate k-means error bound) Consider two arbitrary matrices Φ̄,Φ ∈ Rsxq

with ∆Φ := ∥Φ̄−Φ∥F. Suppose there exists a partition Ω1:r on [s] such that for any i, i′ ∈ Ωk,
Φ̄(i, :) = Φ̄(i′, :). Assume rank(Φ̄) = r. Let U ∈ Rsxr denote the top-r left singular vectors of Φ
with U

⊺
U = Ir. Let {Ω̂1:r, ĉ1:r} be an (1 + ϵ) solution to the k-means problem on U. Then, when

∆Φ ≤
σr(Φ̄)

√
|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, we have

MR(Ω̂1:r) ≤
64(2 + ϵ)

σ2
r (Φ̄)

∆2
Φ (12)

Proof Let Ū ∈ Rsxr denote the top-r left singular vectors of Φ̄ with Ū
⊺
Ū = Ir. Applying Lemma

11 and noticing that rank(Φ̄) = r, we know there exists O⋆ ∈ O(r) such that

∥ŪO⋆ −U∥F ≤
2
√
2∆Φ

σr(Φ̄)
(13)

Note that ∥[ŪO⋆](i, :)− [ŪO⋆](j, :)∥ = ∥(Ū(i, :)− Ū(j, :))O⋆∥ = ∥Ū(i, :)− Ū(j, :)∥. Then
applying Lemma 11, we know for any i ∈ Ωk and j ∈ Ωl

∥[ŪO⋆](i, :)− [ŪO⋆](j, :)∥ =

{
0 if k = l√

1
|Ωk| +

1
|Ωl| if k ̸= l

. (14)

Then, for any k ∈ [r], let δk := minl∈[r]\k mini∈Ωk,j∈Ωl
∥[ŪO⋆](i, :)− [ŪO⋆](j, :)∥, we see δk ≥√

1
|Ωk| +

1
|Ω(1)|

. With (14), we can apply Lemma 12 to matrix {ŪO⋆,U} and obtain the following:

when ∥ŪO⋆ −U∥F ≤
mink
√

|Ωk|δk√
8(2+ϵ)

, we have minh∈H
∑r

k=1 |{i : i ∈ Ωk, i /∈ Ω̂h(k)}| · δ2k ≤

8(2 + ϵ)∥ŪO⋆ −U∥2F ≤
64(2+ϵ)
σ2
r(Φ̄)

∆2
Φ. Finally, plugging in the upper bound for ∥ŪO⋆ −U∥F

in (13) and the bounds for δk, this gives that when ∆Φ ≤
σr(Φ̄)

√
|Ω(r)|+|Ω(1)|

8
√

(2+ϵ)|Ω(1)|
, we can guarantee

MR(Ω̂1:r) = minh∈H
∑r

k=1 |{i : i ∈ Ωk, i /∈ Ω̂h(k)}| · 1
|Ωk| ≤ minh∈H

∑r
k=1 |{i : i ∈ Ωk, i /∈

Ω̂h(k)}| · δ2k ≤
64(2+ϵ)
σ2
r(Φ̄)

∆2
Φ.
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A.1. Proof for Theorem 5

Proof [Proof for Theorem 5] Recall Φ defined in Line 3 of Algorithm 1 and its averaged version Φ̄
defined in Section 4.1. Let i′ := argmaxi∈[s] ∥Φ̄(i, :)−Φ(i, :)∥ and suppose i′ ∈ Ωk. Then, we
have

∥Φ̄−Φ∥F ≤
√
s

(
αA

∥∥∥∥Ai′ −
1

|Ωk|
∑
i∈Ωk

Ai

∥∥∥∥
F

+ αB

∥∥∥∥Bi′ −
1

|Ωk|
∑
i∈Ωk

Bi

∥∥∥∥
F
+ αT

∥∥∥∥T(i′, :)− 1

|Ωk|
∑
i∈Ωk

T(i, :)

∥∥∥∥) (15)

By definition of ϵA, ϵB, and ϵT in Problem P2 and triangle inequality, we have

∥Φ̄−Φ∥F ≤
√
s (αAϵA + αBϵB + αTϵT) =

√
sϵAgg, (16)

where ϵAgg := αAϵA+αBϵB+αTϵT. By construction, in Φ̄, rows that belong to the same cluster
have the same rows, thus we could apply Lemma 13 to {Φ̄,Φ} and obtain that when

√
sϵAgg ≤

σr(Φ̄)
√

|Ω(r)|+|Ω(1)|
8
√

(2+ϵ)|Ω(1)|
, we have MR(Ω̂1:r) ≤ 64(2+ϵ)s

σ2
r(Φ̄)

ϵ2Agg.

A.2. Proof for Theorem 7

We first provide a perturbation result regarding Markov matrices.

Lemma 14 (Section 3.6 in Cho and Meyer (2001)) Consider two Markov matrices T,T0 ∈ Rsxs

and their stationary distributions π,π0 ∈ Rs, then ∥π− π0∥1 ≤ γ1∥T−T0∥∞, where γ1 :=∑s
i=2

1
1−λi(T) .

When the difference ∥T−T0∥ is small, we can further have the following corollary

Corollary 15 In Lemma 14, let πmin := mini π(i), πmax := maxi π(i). Suppose ∥T−T0∥∞ ≤
πmin
γ1

, then we have

max
i
|π(i)− π0(i)| ≤

πmin

2
, min

i
π0(i) ≥

πmin

2
, max

i
π0(i) ≤ πmax +

πmin

2
(17)

max
i
|π(i)−

1
2 − π0(i)

− 1
2 | ≤ (

√
2− 1)γ1π

− 3
2

min∥T−T0∥∞ (18)

max
i
|π(i)

1
2 − π0(i)

1
2 | ≤ (1−

√
2

2
)γ1π

− 1
2

min∥T−T0∥∞ (19)

Proof Since 1
⊺
π = 1

⊺
π0 = 1, we have maxi |π(i)− π0(i)| ≤ 1

2∥π− π0∥1 ≤ γ1
2 ∥T−T0∥∞ ≤

πmin
2 . Then using triangle inequality, we could show (17). Note that the LHS of (18) is equivalent

to maxi
|π0(i)−π(i)|√

π(i)π0(i)(
√

π(i)+
√

π0(i))
, then plugging in the results in (17) can show (18). Note that the

LHS of (19) is equivalent maxi
|π(i)−π0(i)|√
π(i)+
√

π0(i)
, then plugging in the results in (17) can show (19).

16
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Lemma 16 Consider an ergodic Markov matrix T ∈ Rsxs with stationary distribution π and a
partition Ω1:r such that it is approximately lumpable as in (4) with perturbation ϵT. Assume there
exists an ergodic and reversible T0 ∈ L(T,Ω1:r, ϵT) that has informative spectrum. Using T and
π, construct Sr ∈ Rsxr as in Line 7 of Algorithm 1. And define S̄r ∈ Rsxr such that for any i ∈ [s]
(suppose i ∈ Ωk), S̄r(i, :) = 1

|Ωk|
∑

i′∈Ωk
Sr(i

′, :). Let πmin := maxi π(i), πmax := mini π(i),

γ1 :=
∑s

i=2
1

1−λi(T) , and γ2 := min{σr(H) − σr+1(H), 1} where H is defined in Algorithm 1.
Assume perturbation ϵT ≤ πmin

γ1
. Then, for any i ∈ [s] (suppose i ∈ Ωk), we have

∥Sr − S̄r∥F ≤
16γ1
√
s
√
πmax∥T∥F

γ2π2
min

ϵT. (20)

Proof We will start with analyzing T0 and use it as a bridge to prove the claim. Let π0 ∈
Rs denote the stationary distribution of T0. Since T0 is ergodic, we know π0 is strictly posi-
tive. By definition of reversibility, we know diag(π0)T0 = T

⊺
0diag(π0), and this further gives

diag(π0)
1
2T0diag(π0)

− 1
2 = diag(π0)

− 1
2T

⊺
0diag(π0)

1
2 . Let H0 := diag(π0)

1
2T0diag(π0)

− 1
2 ,

then we see H0 is symmetric. Let W0,r ∈ Rsxr denote the top r left singular vectors of H0, by
spectrum theorem, we know the columns of W0,r also gives the top r eigenvectors of H0. Let
S0,r := diag(π0)

− 1
2W0,r, by definition of H0, we see the columns of S0,r are the top r eigen-

vectors of T0. Then, by Lemma 6 and the definition of informative spectrum, we know for any
i, i′ ∈ Ωk, we have S0,r(i, :) = S0,r(i

′, :).
Recall in Algorithm 1, Wr denotes the top r left singular vectors of H := diag(π)

1
2Tdiag(π)

1
2

and let Sr = diag(π)−
1
2Wr. Let O⋆ := minO∈O(r) ∥W0,rO−Wr∥F, whereO(r) is the set of all

r×r orthonormal matrices. Similarly, we have for i, i′ ∈ Ωk, we have [S0,rO
⋆](i, :) = [S0,rO

⋆](i′, :
). Using this property, for any i ∈ [s] (suppose i ∈ Ωk), we have

Sr(i, :)− S̄r(i, :)

=
|Ωk| − 1

|Ωk|
Sr(i, :)−

1

|Ωk|
∑

i′:i′∈Ωk,i′ ̸=i

Sr(i
′, :)

≤|Ωk| − 1

|Ωk|
(Sr(i, :)− [S0,rO

⋆](i, :)) +
1

|Ωk|
∑

i′:i′∈Ωk,i′ ̸=i

[S0,rO
⋆](i′, :)− Sr(i

′, :).

(21)

Now, WLOG, we assume {1, . . . , |Ω1|} = Ω1, {|Ω1| + 1, . . . , |Ω1| + |Ω2|} = Ω2, · · · and define
block diagonal matrices D,P ∈ Rsxs both with r diagonal blocks such that their k-th diagonal
blocks [D]k, [P]k ∈ R|Ωk|x|Ωk| are given by

[D]k =
|Ωk| − 1

|Ωk|
I|Ωk|, [P]k =

1

|Ωk|
(1|Ωk|1

⊺
|Ωk| − I|Ωk|). (22)

Then, stacking (21), we see Sr− S̄r = D(Sr−S0,rO
⋆)+P(S0,rO

⋆−Sr). Note that for a arbitrary
matrix E, we have ∥PE∥2F = tr(P⊺

PEE
⊺
) ≤ tr(D⊺

DEE
⊺
) = ∥DE∥2F where the inequality holds

since for each diagonal block we have [P]
⊺
k[P]k ⪯ [D]

⊺
k[D]k. Therefore,

∥Sr − S̄r∥F ≤ 2∥D(Sr − S0,rO
⋆)∥F ≤ 2max

k

|Ωk| − 1

|Ωk|
∥Sr − S0,rO

⋆∥F ≤ 2∥Sr − S0,rO
⋆∥F.

(23)
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Note that when the aforementioned partition assumption “{1, . . . , |Ω1|} = Ω1, · · · ” is not true, one
can simply left multiply matrix Sr − S̄r by a row permutation matrix such that after permutation,
row 1 to |Ω1| belong to Ω1, etc. Then, (23) still holds since Frobenius norm is invariant under row
permutations. From (23), we see to complete the proof, it suffices to study ∥Sr − S0,rO

⋆∥F.

∥Sr − S0,rO
⋆∥F =∥diag(π)−

1
2 (Wr −W0,rO

⋆) + (diag(π)−
1
2 − diag(π0)

− 1
2 )W0,rO

⋆∥F

≤ 1
√
πmin

∥Wr −W0,rO
⋆∥F +

√
rmax

i
|π(i)−

1
2 − π0(i)

− 1
2 |

(24)

In (24), for term ∥Wr −W0,rO
⋆∥F, according to Lemma 10, we know ∥Wr −W0,rO

⋆∥F ≤
2
√
2

σr(H)−σr+1(H)∥H−H0∥F. Plugging this result and the upper bound for maxi |π(i)−
1
2 −π0(i)

− 1
2 |

in (18) into (24), we have

∥Sr − S0,rO
⋆∥F ≤

2
√
2

(σr(H)− σr+1(H))π0.5
min

∥H−H0∥F +
(
√
2− 1)γ1

√
r

π1.5
min

ϵT. (25)

Next, we evaluate term ∥H−H0∥F. By definitions of H and H0, we have

∥H−H0∥F ≤∥(diag(π)
1
2 − diag(π0)

1
2 ) ·T · diag(π)−

1
2 ∥F

+ ∥diag(π0)
1
2 ·T · (diag(π)−

1
2 − diag(π0)

− 1
2
)∥F

+ ∥diag(π0)
1
2 · (T−T0) · diag(π0)

− 1
2 ∥

≤(max
i
|π(i)

1
2 − π0(i)

1
2 |) · ∥T∥F · (min

i
π(i))−

1
2

+ (max
i

π0(i))
1
2 · ∥T∥F · (max

i
|π(i)−

1
2 − π0(i)

− 1
2 |)

+ (max
i

π0(i))
1
2 ·
√
s∥T−T0∥∞ · (min

i
π0(i))

− 1
2

(26)

Plugging in the results in Corollary 15 gives

∥H−H0∥F ≤2.56γ1
√
sπ0.5

maxπ
−1.5
min ∥T∥FϵT. (27)

Applying (27) to (25), we see

∥Sr − S0,rO
⋆∥F ≤

8γ1
√
s
√
πmax∥T∥F

γ2π2
min

ϵT. (28)

where γ2 := min{σr(H)−σr+1(H), 1}. Finally, by plugging (28) into (23), we have ∥Sr − S̄r∥F ≤
16γ1

√
s
√
πmax∥T∥F

γ2π2
min

ϵT, which concludes the proof.

Now we are ready to present the main proof for Theorem 7.
Proof [Proof for Theorem 7] Recall Φ defined in Line 8 of Algorithm 1 and its averaged version
Φ̄ defined in Section 4.1. Let i′ := argmaxi∈[s] ∥[Φ̄−Φ](i, n2 + np+ 1 : n2 + np+ r)∥ and
suppose i′ ∈ Ωk. Then, we have

∥Φ̄−Φ∥F ≤
√
s

αA

∥∥∥∥Ai′ −
1

|Ωk|
∑
i∈Ωk

Ai

∥∥∥∥
F
+ αB

∥∥∥∥Bi′ −
1

|Ωk|
∑
i∈Ωk

Bi

∥∥∥∥
F

+ αT∥Sr − S̄r∥F,

(29)
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where S̄ is defined the same as in Lemma 16. By definition of ϵA and ϵB in Problem P1 and Lemma
16, we have

∥Φ̄−Φ∥F ≤
√
s

(
αAϵA + αBϵB + αT

16γ1
√
πmax∥T∥F

γ2π2
min

ϵT

)
=
√
sϵLmp (30)

where ϵLmp := αAϵA + αBϵB + αT
16γ1

√
πmax∥T∥F

γ2π2
min

ϵT. By construction, in Φ̄, rows that belong

to the same cluster have the same rows, thus we could apply Lemma 13 to {Φ̄,Φ} and obtain that

when
√
sϵLmp ≤

σr(Φ̄)
√

|Ω(r)|+|Ω(1)|
8
√

(2+ϵ)|Ω(1)|
, we have MR(Ω̂1:r) ≤ 64(2+ϵ)s

σ2
r(Φ̄)

ϵ2Lmp.

Appendix B. Proof for Approximation Guarantees Theorem 8

We first provide several supporting lemmas.

Lemma 17 (Mania et al. (2019), Lemma 5) Consider two matrices A and Ā with ∥A− Ā∥ ≤
ϵA. Let ρ be the spectral radius of A, and let τ := supk∈N ∥Ak∥/ρk. Then, we have

∥Āt∥ ≤ τ (τϵA + ρ)t , ∥Āt −At∥ ≤ τ2t (τϵA + ρ)t−1 ϵA. (31)

Lemma 18 (Sattar et al. (2021)) Consider an autonomous MJS(A1:s, 0,T). Define matrix A ∈
Rsn2xsn2

with its ij-th n2×n2 block given by [A]ij := T(j, i)·Aj⊗Aj . Let Σ(i)
t := E[xtx

⊺
t1{ωt=i}]

and st := [vec(Σ(1)
t )

⊺
, . . . , vec(Σ(s)

t )
⊺
]
⊺. Then, we have

st = Ats0 (32)

Recall in Sec 5, for Σ, i.e., MJS(A1:s,B1:s,T), we define the augmented state matrix A ∈
Rsn2xsn2

with its ij-th n2 × n2 block given by [A]ij := T(j, i) · Aj ⊗ Aj . We let ρ denote the
spectral radius of A and let τ := supk∈N ∥Ak∥/ρk. The next lemma is regarding the stability of
the augmentation of two MJS with the same A matrix.

Lemma 19 Construct matrix Ǎ ∈ R4sn2x4sn2
with its ij-th 4n2 × 4n2 block given by [Ǎ]ij :=

T(j, i) ·
[
Aj

Aj

]
⊗

[
Aj

Aj

]
. Then, (i) Ǎ has spectral radius ρ, (ii) ∥Ǎk∥=∥Ǎk∥, and (iii)

supk∈N ∥Ǎk∥/ρk=τ .

Proof One can simply see these results by noticing there exists a permutation matrix P such that
PǍP

⊺
= I4 ⊗A, where I4 denotes the 4× 4 identity matrix.

Now we are ready to present the proof for Theorem 8.
Proof [Proof for Theorem 8] First, we construct two autonomous switched systems:

Π̌ :=

{
x̌t+1 = Ǎω̌t x̌t

ω̌t = ωt,
, Π̄ :=

{
x̄t+1 = Āω̄t x̄t

ω̄t = ωt,
(33)

where ωt is the mode index for the original MJS Σ, and for i ∈ [s] (suppose i ∈ Ωk),

Ǎi =

[
Ai

Ai

]
, Āi =

[
Ai

Âk

]
. (34)
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Since ωt of Σ follows Markov chain T, systems Π̌ and Π̄ can be viewed as MJS(Ǎ1:s, 0, Ť) and
MJS(Ā1:s, 0, T̄) respectively with Ť = T̄ = T.

Π̌ = MJS(Ǎ1:s, 0, Ť) and Π̄ = MJS(Ā1:s, 0, T̄) where Ť = T̄ = T and for all i ∈ Ωk We
then define observations for Π̌ and Π̄: y̌t = Čx̌t and ȳt = C̄x̄t where Č = C̄ = [In,−In]. We set
their initial states as x̌0 = [x

⊺
0,x

⊺
0]
⊺, x̄0 = [x

⊺
0, x̂

⊺
0]
⊺ where x0 and x̂0 are the initial states of Σ and

Σ̂ respectively. Due to the shared initial conditions for Σ and Σ̂, we have, for all t, x̌t = [x
⊺
t ,x

⊺
t ]
⊺

and x̄t = [x
⊺
t , x̂

⊺
t ]
⊺, thus y̌t = 0 and ȳt = xt − x̂t. We define Σ̌t = E[x̌tx̌

⊺
t ] and Σ̄t = E[x̄tx̄

⊺
t ],

then we have E[∥xt − x̂t∥2] = E[ȳtȳ
⊺
t ] = E[ȳtȳ

⊺
t ] − E[y̌ty̌

⊺
t ] = tr(C̄⊺

C̄Σ̄t) − tr(Č⊺
ČΣ̌t) =

tr(C̄⊺
C̄(Σ̄t − Σ̌t)). Since C̄

⊺
C̄ ⪰ 0, we further have

E[∥xt − x̂t∥2] ≤ tr(C̄⊺
C̄)∥Σ̄t − Σ̌t∥ = 2n∥Σ̄t − Σ̌t∥. (35)

We let Σ̌
(i)
t := E[x̌tx̌

⊺
t1{ω̌t=i}], Σ̄

(i)
t := E[x̄tx̄

⊺
t1{ω̄t=i}], št := [vec(Σ̌(1)

t ), . . . , vec(Σ̌(s)
t )]

⊺

and s̄t := [vec(Σ̄(1)
t ), . . . , vec(Σ̄(s)

t )]
⊺. Note that vec(Σ̌t) = [I4n2 , . . . , I4n2 ]št and vec(Σ̄t) =

[I4n2 , . . . , I4n2 ]s̄t, thus we have ∥Σ̌t − Σ̄t∥ ≤ ∥Σ̌t − Σ̄t∥F = ∥vec(Σ̌t − Σ̄t)∥ ≤
√
s∥št − s̄t∥.

Plugging this into (35), we have

E[∥xt − x̂t∥2] ≤ 2n
√
s∥št − s̄t∥. (36)

By Lemma 18, we have št = Ǎtš0 and s̄t = Āts̄0, where Ǎ ∈ R4sn2x4sn2
is constructed such

that its ij-th 4n2 × 4n2 block given by [Ǎ]ij = Ť(j, i)Ǎj ⊗ Ǎj , and Ā is constructed similarly.
Since š0 = s̄0 = [vec(x̌0x̌

⊺
0) · P(ωt = 1), . . . , vec(x̌0x̌

⊺
0) · P(ωt = s)]

⊺ and ∥š0∥ = ∥x̌0x̌
⊺
0∥F ·

(
∑

i∈[s] P(ωt = i)2)
1
2 ≤ ∥x̌0x̌

⊺
0∥F = 2∥x0x

⊺
0∥F = 2∥x0∥2, we further have

E[∥xt − x̂t∥2] ≤ 4n
√
s∥Ǎt − Āt∥∥x0∥2. (37)

Now, it only suffices to evaluate ∥Ǎt − Āt∥. When t = 1, we have

∥Ǎ − Ā∥ ≤
√
smax

i
∥[[Ǎ]i1, . . . , [Ǎ]is]− [[Ā]i1, . . . , [Ā]is]∥

=
√
smax

i
∥[T(1, i) · (Ǎ1 ⊗ Ǎ1 − Ā1 ⊗ Ā1), . . . ,T(s, i) · (Ǎs ⊗ Ǎs − Ās ⊗ Ās)]∥

≤
√
smax

i
max

j
∥Ǎj ⊗ Ǎj − Āj ⊗ Āj∥∥T(:, i)∥

≤
√
smax

j
∥Ǎj ⊗ Ǎj − Āj ⊗ Āj∥

≤
√
smax

j
∥Ǎj ⊗ (Ǎj − Āj) + (Ǎj − Āj)⊗ Āj∥

≤
√
smax

j
∥Ǎj∥∥(Ǎj − Āj)∥+ ∥(Ǎj − Āj)∥∥Āj∥.

(38)

It is easy to see for all j, ∥Ǎj∥ ≤ Ā. Suppose j ∈ Ωl, we have ∥Ǎj − Āj∥ = ∥Aj − Âl∥ =
∥Aj − 1

|Ωk|
∑

j′∈Ωl
Aj′∥ ≤ 1

|Ωl|
∑

j′∈Ωl
∥Aj −Aj′∥ ≤ ϵA. We further have ∥Āj∥ ≤ Ā+ϵA ≤ 2Ā

as we assume ϵA ≤ Ā. Plugging these results into (38), we have ∥Ǎ − Ā∥ ≤ 3
√
sĀϵA. Further-

more, from Lemma 19, we know Ǎ has spectral radius ρ and supk∈N ∥Ǎk∥/ρk=τ . Then, we can
apply Lemma 17 and obtain ∥Ǎt − Āt∥ ≤ 3

√
st(3
√
sτĀϵA + ρ)t−1τ2ĀϵA ≤ 3

√
stρt−1

0 τ2ĀϵA

20



CLUSTERING-BASED MODE REDUCTION FOR MARKOV JUMP SYSTEMS

where the second inequality holds since we assume ϵA ≤ 1−ρ
6
√
sτĀ

and let ρ0 := 1+ρ
2 . Finally,

plugging this upper bound for ∥Ǎt − Āt∥ into (37), we have

E[∥xt − x̂t∥2] ≤ 12nstρt−1
0 τ2Ā∥x0∥2ϵA, (39)

which concludes the proof.

Appendix C. Proof for Suboptimality Guarantees Theorem 9

In this appendix, for completeness, we provide not only the proof for the infinite time LQR result
Theorem 9, but also the discussion for the finite time case. In LQR problems, given positive definite
cost matrices Q and R, we define quadratic cost JT = E

[∑T−1
t=0

(
x
⊺
tQxt + u

⊺
tRut

)
+ x

⊺
TQxT

]
,

and the goal is to design inputs u0:T−1 to minimize JT in the finite time horizon setting and
lim supT→∞

1
T JT in the infinite setting under MJS dynamics Σ. To ease the exposition, we let

S+s := {X1:s : ∀i ∈ [s],Xi ∈ Rnxn,Xi ⪰ 0} and define the following mappings for X1:s ∈ S+s :
for i ∈ [s], let

φi(X1:s) :=
∑
j∈[s]

T(i, j)Xj (40)

Ri(X1:s) := Q+A
⊺
iφi(X1:s)Ai −A

⊺
iφi(X1:s)

⊺
Bi

(
R+B

⊺
iφi(X1:s)Bi

)−1
B

⊺
iφi(X1:s)Ai

(41)

Ki(X1:s) := −
(
R+B

⊺
iφi(X1:s)Bi

)−1 (
B

⊺
iφi(X1:s)Ai

)
(42)

According to Costa et al. (2006), to compute the optimal inputs for the finite time horizon LQR, we
first compute a set of matrices P(t)

1:s for every t using backward iteration: ∀i ∈ [s], P(T )
i = Q, and

for t = T − 1, T − 2, . . . P
(t)
i = Ri(P

(t+1)
1:s ), then, if ωt = i at time t, we let input ut = K

(t)
i xt

where K
(t)
i = Ki(P

(t+1)
1:s ). For the infinite time horizon LQR problem, to guarantee its solvability,

we assume the following.

Assumption A1 Σ is mean-square stabilizable . Cost matrices Q ≻ 0 and R ≻ 0.

Under A1, the solution to the infinite time horizon LQR is the following: we first solve for the
coupled Riccati equations Pi = Ri(P1:s), ∀i ∈ [s], and then if ωt = i at time t, we let input
ut = Kixt where Ki = Ki(P1:s). Particularly, the Riccati solution P1:s is unique among S+s with
Pi ≻ 0 for all i, and K1:s stabilizes Σ. It is also known from Costa et al. (2006) that as the time
horizon goes to infinity, the solution to the finite time setting converges to the infinite time setting,
i.e., as T → ∞, for any finite t, P(T−t)

1:s = P1:s and K
(T−t)
1:s = K1:s. Thus, one way to solve for

coupled Riccati equations is to applyR1:s recursively until convergence.
As we discussed at the beginning of this section, we may also use the reduced MJS Σ̂ as a

surrogate to compute controllers for Σ. To do this, we solve for the LQR controller K̂(1:T )
1:r for the

finite time setting (or K̂1:r for the infinite time setting) in the same way as K(1:T )
1:r (or K1:r) except

replacing the MJS Σ with Σ̂. To apply these controllers to the original MJS Σ, if at time t, ωt ∈ Ω̂k,
we let ut = K̂

(t)
k xt for the finite time setting (or ut = K̂kxt for the infinite time setting). While
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solving the LQR problems, each iteration computes a K matrix for every mode, thus the complexity
for Σ is O(s) while only O(r) for Σ̂.

Next, we analyze the sub-optimality when applying controllers computed with Σ̂. To begin with,
we first construct a fictional MJS by expanding the reduced Σ̂: we let Σ̄ := MJS(Ā1:s, B̄1:s, T̄) such
that T̄ ∈ L(T, Ω̂1:r, ϵT), and for all i ∈ [s] (suppose i ∈ Ω̂k), Āi = Âk, B̄i = B̂k. Note that by
definition of L(T, Ω̂1:r, ϵT), we can find T̄ via solving a feasibility linear programming problem.
Particularly, if it is the aggregatable case P2, if suffices to let T̄(i, :) := |Ω̂k|−1

∑
i∈Ω̂k

T(i, :) if

i ∈ Ω̂k. Note that by construction, Σ̄ is mode-reducible with respect to Ω̂1:r and can be reduced to
Σ̂. According to Proposition 4, Σ̄ has the same dynamics as Σ̂. Since Σ̄ has the same number of
modes as Σ, thus we can use Σ̄ as a bridge to compare Σ and Σ̂.

Similar to the notations for Σ, for Σ̂ we define φ̂1:r, R̂1:r, K̂1:r, P̂(1:T )
1:r , K̂(1:T )

1:r , P̂1:r, and K̂1:r.
Particularly, P̂1:r denotes the Riccati solution such that P̂i = R̂i(P̂1:r), and K̂1:r is computed such
that K̂i = K̂i(P̂1:r). For Σ̄, we similarly define φ̄1:s, R̄1:s, K̄1:s, P̄(1:T )

1:s , K̄(1:T )
1:s , P̄1:s, and K̄1:s. In

terms of LQR solutions, the relation between Σ̂ and Σ̄ is given below.

Lemma 20 For the finite time LQR controllers, we have, for any t and any i belonging to any Ω̂k,
K̄

(t)
i = K̂

(t)
k . For the infinite time LQR controllers, assuming the Riccati solution P̄1:s uniquely

exists among S+s , and K̄1:s stabilizes Σ̄, then (i) the Riccati solution P̂1:r exists and uniquely exists
among S+r ; (ii) K̂k = K̄i for any i belonging to any Ω̂k.

Proof For the finite time case, we first show via induction that, for any t and any i belonging to
any Ω̂k, P̄(t)

i = P̂
(t)
k . For T , we have P̄

(T )
i = P̂

(T )
k = Q. Suppose for t, we have P̄

(t)
i = P̂

(t)
k .

Then we consider time t − 1. From the construction of Σ̄, for i ∈ Ω̂k, we have
∑

j∈Ω̂l
T̄(i, j) =

T̂(k, l), which further implies φ̄i(P̄
(t)
1:s) =

∑
l∈[r],j∈Ω̂l

T̄(i, j)P̄
(t)
j =

∑
l∈[r],j∈Ω̂l

T̄(i, j)P̂
(t)
l =∑

l∈[r] T̂(k, l)P̂
(t)
l = φ̂k(P̂

(t)
1:s). Also note that Āi = Âk, B̄i = B̂k, then by definition of the R

operator, it is easy to see R̄i(P̄
(t)
1:s) = R̂k(P̂

(t)
1:s). Since P̄(t−1)

i = R̄i(P̄
(t)
1:s) and P̂

(t−1)
k = R̂k(P̂

(t)
1:s),

we have P̄
(t−1)
i = P̂

(t−1)
k . This completes the induction and shows for any t and any i belonging

to any Ω̂k, P̄(t)
i = P̂

(t)
k . Since during the induction, we have shown φ̄i(P̄

(t+1)
1:s ) = φ̂k(P̂

(t+1)
1:s ), and

Āi = Âk, B̄i = B̂k, by definition of the K operator, we have K̄i(P̄
(t+1)
1:s ) = K̂k(P̂

(t+1)
1:s ). Finally,

since K̄
(t)
i = K̄i(P̄

(t+1)
1:s ) and K̂

(t)
k = K̂k(P̂

(t+1)
1:s ), we have K̄

(t)
i = K̂

(t)
k .

Now we consider the infinite time case. Under the given assumptions, by (Costa et al., 2006,
Proposition A.23), we know for any t, limT→∞ P̄

(T−t)
i = P̄i. Using the result for finite time case

that for any i, i′ ∈ Ω̂k, P̄(T−t)
i = P̄

(T−t)
i′ , we further have P̄i = P̄i′ . Then, if we set P̂1:r such that

P̂k = P̄i, similar to the finite time case, we can verify P̂i = R̂i(P̂1:r) for all i ∈ [r], which shows
the existence of the Riccati solution P̂1:r. Suppose there exists another Riccati solution Ô1:r ∈ S+r
such that Ô1:r ̸= P̂1:r yet also satisfies Ôi = R̂i(Ô1:r). Define Ō1:s such that Ōi = Ôk if
i ∈ Ω̂k, then we see Ō1:s ∈ S+s , Ō1:s ̸= P̄1:s yet also satisfies Ōi = R̄i(Ō1:s), which violates the
assumption regarding the uniqueness of Riccati solution P̄1:s. Therefore, P̂1:r uniquely exists, and
(i) is proved. Finally, (ii) can be shown simply by noticing that K̂k = K̂k(P̂1:r) = K̄k(P̄1:s) = K̄i

where the second equality follows from similar arguments in the finite time case.

Other than illustrating the relations between Σ̂ and Σ̄ in terms LQR solutions, Lemma 20 also
implies that if an MJS is mode-reducible, there is redundancy among its mode individual controllers,
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and these controllers can be computed using the mode-reduced MJS, which justifies our discussion
at the beginning of this section. The results for infinite time case in Lemma 20 is more involved
as solutions P̂1:r and P̄1:s to Riccati equations are not defined as explicitly as their finite time
counterparts P̂(t)

1:r and P̄
(t)
1:s, thus their existence and uniqueness are of importance and need separate

discussions. For MJS that are not exactly mode-reducible, i.e., Σ in P1 and P2, controllers computed
using the reduced MJS Σ̂ will not be optimal if we apply them to Σ due to the perturbation ϵA, ϵB,
and ϵT. We are able to analyze this resulting suboptimality for the infinite time case with recent
advances in MJS-LQR perturbation analysis Du et al. (2022b).

Theorem 21 (Complete Version of Theorem 9) Assume A1 holds for Σ, and Σ has additive Gaus-
sian noiseN (0, σ2

wIn) that is independent of the mode switching. Let J⋆ and Ĵ respectively denote
the cost incurred by the optimal controller K1:s and controller K̂1:r (at time t, ut = K̂

(t)
k xt if

ωt ∈ Ω̂k). Then, there exists constant ϵ̄A,B, ϵ̄T, CA,B, and CT (depend on Σ, Q, and R), such
that when max{ϵA, ϵB} ≤ ϵ̄A,B and ϵT ≤ ϵ̄T, the Riccati solution P̂1:r exists and uniquely exists
among S+r , thus K̂1:r exists as well, and Ĵ − J⋆ ≤ σ2

w(CA,Bmax{ϵA, ϵB}+ CTϵT)
2.

Proof We will start with the discussion between Σ and Σ̄, and use the relation between Σ̄ and Σ̂
given in Lemma 20 to prove the claim.

Comparing Σ̄ and Σ, one can see ∥Āi −Ai∥ ≤ ϵA, ∥B̄i −Bi∥ ≤ ϵB, and ∥T̄−T∥∞ ≤ ϵT.
Then, from Du et al. (2022b) we know when max{ϵA, ϵB} ≤ ϵ̄A,B and ϵT ≤ ϵ̄T, the Riccati
solution P̄1:s uniquely exists among S+s , thus K̄1:s exists, and the cost J̄ when applying P̄1:s to Σ
has suboptimality J̄ − J⋆ ≤ σ2

w(CA,Bmax{ϵA, ϵB} + CTϵT). Using Lemma 20, we know P̂1:r

exists and uniquely exists S+r , and K̂k = K̄i for any i belonging to any Ω̂k, which implies applying
K̄1:s is equivalent to applying K̂1:r as in the theorem statement. Thus J̄ = Ĵ , and Ĵ − J⋆ =
J̄ − J⋆ ≤ σ2

w(CA,Bmax{ϵA, ϵB}+ CTϵT).

23


	Introduction
	Related Work
	Preliminaries and Problem Setup
	Preliminaries
	Mode-reducibility Conditions
	Problem Formulation

	Clustering-based Mode Reduction for MJS
	Theoretical Guarantees for Clustering

	Approximation Guarantees
	Controller Design with Case Study on LQR
	Numerical Experiments
	Conclusion and Future Work
	Proof for Clustering Results
	Proof for Theorem 5
	Proof for Theorem 7

	Proof for Approximation Guarantees Theorem 8
	Proof for Suboptimality Guarantees Theorem 9

