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Abstract— Real-world control applications often involve com-
plex dynamics subject to abrupt changes or variations. Markov
jump linear systems (MJS) provide a rich framework for mod-
eling such dynamics. Despite an extensive history, theoretical
understanding of parameter sensitivities of MJS control is
somewhat lacking. Motivated by this, we investigate robustness
aspects of certainty equivalent model-based optimal control for
MJS with a quadratic cost function. Given the uncertainty
in the system matrices and in the Markov transition matrix
is bounded by ϵ and η respectively, robustness results are
established for (i) the solution to coupled Riccati equations and
(ii) the optimal cost, by providing explicit perturbation bounds
that decay as O(ϵ+ η) and O((ϵ+ η)2) respectively.

I. INTRODUCTION

The Linear Quadratic Regulator (LQR) is both theoreti-
cally well understood and commonly used in practice when
the system dynamics are known. Its nice properties, e.g.,
admitting an elegant linear state feedback solution, make it
a popular benchmark problem in reinforcement learning and
adaptive control [1], [2], [3], [4], [5], [6], [7].

A natural generalization of linear time-invariant systems
is Markov jump linear systems (MJS), which allow the dy-
namics of the underlying system to switch between multiple
linear systems according to an underlying finite Markov
chain. Similarly, a natural generalization of the LQR problem
to MJS is to use mode-dependent cost matrices, which
enables different control goals under different modes. While
the optimal control for MJS-LQR is well understood when
one has perfect knowledge of the system dynamics [8],
[9], in practice we do not always know the exact system
dynamics and the transition matrix. For instance, one might
use system identification techniques to learn an approximate
model for the system. Designing optimal controllers for MJS-
LQR with this approximate system dynamics and transition
matrix in place of the true ones leads to so-called certainty
equivalent (CE) control which is used extensively in practice.
However, a theoretical understanding of the suboptimality
of the CE control for MJS-LQR is somewhat lacking. The
main challenge here is the hybrid nature of the problem
that requires consideration of both the system dynamics
uncertainty ϵ, and the underlying Markov transition matrix
uncertainty η.

The solution of infinite horizon MJS-LQR involves cou-
pled algebraic Riccati equations. Our goal is to understand
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the sensitivity of the solution of these equations and the
corresponding optimal cost to perturbations in the system
model. Toward this aim, we first establish an explicit O(ϵ+η)
perturbation bound for the solution to coupled algebraic
Riccati equations that arise in the context of MJS-LQR. This
in turn is used to establish an explicit O((ϵ + η)2) subop-
timality bound on the cost. Finally, numerical experiments
are provided to support our theoretical claims. Our proof
strategy requires nontrivial advances over those of [4], [10].
Specifically, the coupled nature of these Riccati equations
requires novel perturbation arguments, as they lack some of
the nice properties of the standard Riccati equations, like
uniqueness of solution under certain conditions or being
amenable to matrix factorization based approaches.

Related Work: The performance analysis of CE control
for the classical LQR problem for linear time invariant
(LTI) systems relies on the perturbation/sensitivity analysis
of the underlying algebraic Riccati equations (ARE), i.e.
how much the ARE solution changes when the parameters
in the equation are perturbed. This problem is studied in
many works [11]. Early results on ARE solution pertur-
bation bound are presented in [12] (continuous-time) and
[10] (discrete-time). Most literature, however, only discusses
perturbed solutions within the vicinity of the ground-truth
solution. The uniqueness of such a perturbed solution is
not discussed until [13], which is further refined in [14] to
provide explicit perturbation bounds and generalization to
complex equations. Tighter bounds are obtained [15] when
the parameters have a special structure like sparsity.

Channelled by ARE perturbation results, the end-to-end
CE LQR control suboptimality bound in terms of the
dynamics perturbation is established in [4]. The field of
CE MJS-LQR control and the corresponding coupled ARE
(cARE) perturbation analysis, however, is not well studied.
Two perturbation results [16], [17] for cARE only consider
continuous-time cARE that arises in robust control appli-
cations and they are not directly applicable in MJS-LQR
setting. Our work is also related to robust control for MJS
(see, e.g., [18], [9]), where the focus is to numerically com-
pute a controller to achieve a guaranteed cost under a given
uncertainty bound. Whereas, we aim to characterize how
the degradation in performance depends on perturbations in
different parameters when CE control is used. Therefore, our
work contributes to the body of work in robust control and
CE control of MJS from a different perspective, and also
paves the way to use these ideas in the context of learning-
based adaptive control with performance guarantees as in our
companion paper [19].



II. PRELIMINARIES AND PROBLEM SETUP

Notations: We use boldface uppercase (lowercase) letters
to denote matrices (vectors). For a matrix V, ρ(V), σ(V),
and ∥V∥ denote its spectral radius, smallest singular value,
and spectral norm, respectively. We let ∥V∥+ := ∥V∥ + 1.
vec(V) denotes the vectorization, and V1 ⊗ V2 denotes
the Kronecker product. V1:s denotes a set of s matrices
{Vi}si=1 of same dimensions. We use diag(V1:s) to de-
note a block diagonal matrix whose i-th diagonal block is
given by Vi. We define [s] := {1, 2, . . . , s}, σ(V1:s) :=
mini∈[s] σ(Vi), ∥V1:s∥ := maxi∈[s] ∥Vi∥, and ∥V1:s∥+ :=
maxi∈[s] ∥Vi∥+. We use αU1:s + βV1:s to denote {αUi +
βVi}si=1. Notation ◦ between two operators denotes the
operator composition.

A. Markov Jump Systems

We consider the problem of optimally controlling MJS,
which are governed by the state equation,

xt+1 = Aω(t)xt +Bω(t)ut +wt s.t.
ω(t) ∼ Markov Chain(T),

(1)

where xt ∈ Rn, ut ∈ Rp and wt ∈ Rn denote the state,
input (or action) and noise at time t respectively. Through-
out, we assume E[x0x

⊺
0 ] is bounded, and {wt}∞t=0

i.i.d.∼
N (0, σ2

wIn). There are s modes in total, and the dynamics
of the i-th mode is given by (Ai,Bi). The active mode
at time t is indexed by ω(t) ∈ [s]. In MJS the mode
sequence {ω(t)}∞t=0 follows an ergodic Markov chain with
transition matrix T ∈ Rs×s

+ such that for all t ≥ 0, the ij-th
element of T denotes the conditional probability [T]ij :=
P
(
ω(t + 1) = j | ω(t) = i

)
,∀i, j ∈ [s]. Due to ergodicity,

there exists a unique stationary distribution π∞ ∈ Rs such
that (T⊺)tπ∞ → π∞ as t → ∞. Throughout, we assume the
initial state x0, Markov chain {ω(t)}∞t=0, and noise {wt}∞t=0

are mutually independent. We use MJS(A1:s,B1:s,T) to
refer to an MJS parameterized by (A1:s,B1:s,T).

For the mode-dependent controller K1:s that yields inputs
ut=Kω(t)xt, we use Li:=Ai +BiKi to denote the closed-
loop state matrix for mode i. We use xt+1=Lω(t)xt to denote
the noise-free closed-loop MJS . Due to the randomness in
{ω(t)}∞t=0, it is common to consider the stability of MJS in
the mean-square sense which is defined as follows.

Definition 1. [9, Definitions 3.8, 3.40] (a) We say MJS
in (1) with ut=0 is mean square stable (MSS) if
there exists x∞,Σ∞ such that for any initial state/mode
x0, ω(0), as t→∞, we have ∥E[xt]− x∞∥→0 and
∥E[xtx

⊺
t ]−Σ∞∥→0. In the noise-free case (wt=0), we

have x∞=0, Σ∞=0. (b) We say MJS in (1) with
wt=0 is (mean square) stabilizable if there exists mode-
dependent controller K1:s such that the closed-loop MJS
xt+1=(Aω(t)+Bω(t)Kω(t))xt is MSS. We call such K1:s a
stabilizing controller.

One can check the stabilizability of an MJS via linear
matrix inequalities [9, Proposition 3.42]. It is well-known
that the stability of non-switching systems is related to the
spectral radius of the state matrix. Similarly, the mean-square

stability of an autonomous MJS xt+1 = Lω(t)xt is related
to the spectral radius of the augmented state matrix: L̃ ∈
Rsn2xsn2

with ij-th n2×n2 block given by
[L̃]ij := [T]ijL

⊺
i ⊗ L

⊺
i , ∀ i, j ∈ [s]. (2)

Define the operator, φi(V1:s) :=
∑s

j=1[T]ijVj for all i ∈
[s], then we have the following results regarding the MSS.

Lemma 2. [9, Theorem 3.9] The following are equivalent:
(a) MJS xt+1=Lω(t)xt is MSS; (b) ρ(L̃)<1; (c) there exists
V1:s with Vi≻0, such that Vi−L⊺

i φi(V1:s)Li≻0, ∀i ∈ [s].

These assertions reduce to the classical stability results
regarding spectral radius and Lyapunov equation when s = 1.
Moreover, it can be shown that the augmented matrix L̃⊺

maps {E[xtx
⊺
t 1ω(t)=i]}si=1 to {E[xt+1x

⊺
t+11ω(t+1)=i]}si=1

[9, p.35], hence its spectral radius determines MSS.

B. Linear Quadratic Regulator

The optimal control problem we consider in
this paper is the following Markov jump system
infinite-horizon linear quadratic regulator (MJS-
LQR) problem where we seek to minimize the
long-term average quadratic cost J(u0,u1, . . . ) :=
lim supT→∞ E

[
1
T

∑T
t=0 x

⊺
tQω(t)xt+u⊺

tRω(t)ut

]
, i.e.

inf J(u0,u1, . . . )

s.t. xt, ω(t) ∼ MJS(A1:s,B1:s,T).
(3)

Matrices Qω(t) and Rω(t) are mode-dependent cost matrices
chosen by users, and the expectation is over the randomness
of initial state x0, noise {wt}∞t=0 and Markovian modes
{ω(t)}∞t=0. Unlike classical LQR for LTI systems, where
cost matrices are usually fixed throughout the time horizon,
the mode-dependent cost matrices in MJS-LQR allows us to
have different control goals under different modes. In this
work, we are interested in the state feedback solution under
the mode-dependent controller, which is guaranteed to exist
under the following assumption.

Assumption 3. (a) For all i ∈ [s], Qi ≻ 0 and Ri ≻ 0; (b)
the MJS in (1) with wt = 0 is stabilizable.

Similar to the algebraic Riccati equation for LTI-LQR, the
optimal solution to (3) is closely related to the following s
coupled Riccati equations: for i = 1, 2, · · · , s,

Pi = A
⊺
i φi(P1:s)Ai +Qi −A

⊺
i φi(P1:s)Bi

·
(
Ri +B

⊺
i φi(P1:s)Bi

)-1
B

⊺
i φi(P1:s)Ai (4)

with P1:s as unknowns. We refer (4) as coupled discrete-
time algebraic Riccati equations (cDARE), and use notation
cDARE(A1:s,B1:s,T) to denote the parametrized form,
where the Markov transition matrix T determines the op-
erator φ in (4). In practice, cDARE can be solved efficiently
either with LMIs or via value iteration [9]. We know the
following about the solution to (3) and (4).

Lemma 4. [9, Theorem 4.6 and Corollary A.21] Under
Assumption 3, cDARE(A1:s,B1:s,T) has a unique solution
P⋆

1:s among {P1:s : Pi ⪰ 0, ∀ i}, and P⋆
i ≻ 0 for all

i ∈ [s]. Moreover, the controller K⋆
1:s with

K⋆
i = −

(
Ri +B

⊺
i φi(P

⋆
1:s)Bi

)-1
B

⊺
i φi(P

⋆
1:s)Ai (5)



stabilizes MJS in (1) and minimizes the cost (3) with input
ut=K⋆

ω(t)xt and optimal cost J⋆=σ2
wtr(

∑
i∈[s] π∞(i)P⋆

i ).

C. Certainty Equivalent Controller

In this work we seek to control MJS(A1:s,B1:s,T) with
unknown dynamics (A1:s,B1:s,T) based on approximate
parameters (Â1:s, B̂1:s, T̂) that satisfy

∥Ai − Âi∥ ≤ ϵ, ∥Bi − B̂i∥ ≤ ϵ, ∥T− T̂∥∞ ≤ η. (6)
The cost matrices (Q1:s,R1:s) are assumed known and
the modes {ω(t)}∞t=0 are observed at run-time. We an-
alyze the CE approach, that is, using the approxi-
mate parameters (Â1:s, B̂1:s, T̂), we solve the perturbed
cDARE(Â1:s, B̂1:s, T̂),

Pi = Â
⊺
i φ̂i(P1:s)Âi +Qi − Â

⊺
i φ̂i(P1:s)B̂i

·
(
Ri + B̂

⊺
i φ̂i(P1:s)B̂i

)-1
B̂

⊺
i φ̂i(P1:s)Âi, (7)

for all i ∈ [s] and Pi ⪰ 0, where the operator φ̂ is defined as
φ̂i(V1:s) :=

∑s
j=1[T̂]ijVj . Let P̂1:s be the positive definite

solution of (7), then the CE controller is given by K̂1:s with

K̂i = −
(
Ri + B̂

⊺
i φ̂i(P̂1:s)B̂i

)-1
B̂

⊺
i φ̂i(P̂1:s)Âi. (8)

Lastly, we apply the input ût = K̂ω(t)xt to control the true
MJS(A1:s,B1:s,T).

Let Ĵ denote the cost incurred by playing the CE controller
K̂1:s. In the next section, we address the following questions:
(a) When can the perturbed cDARE in (7) be guaranteed
to have a unique positive semi-definite solution P̂1:s? (b)
What is a tight upper bound on ∥P̂1:s −P⋆

1:s∥? (c) When
does K̂1:s stabilize the true MJS? (d) How large is the
suboptimality gap Ĵ − J⋆?

III. PERTURBATION ANALYSIS FOR MJS-LQR

We first introduce a few more concepts and notations. We
use L⋆

i := Ai+BiK
⋆
i to denote the closed-loop state matrix

under the optimal MJS-LQR controller (5), and define the
augmented state matrix L̃⋆ similar to (2) such that its ij-th
block is given by [L̃⋆]ij := [T]ijL

⋆
i
⊺ ⊗ L⋆

i
⊺
. From Lemma

4, we know the closed-loop MJS xt+1 = L⋆
ω(t)xt is MSS,

thus ρ(L̃⋆) < 1 by Lemma 2. We let ρ⋆ := ρ(L̃⋆) and define
the following to quantify the decay of L̃⋆.

τ⋆ := sup
k∈N

∥(L̃⋆)k∥/ρ⋆k. (9)

Note that τ⋆ is finite by Gelfand’s formula, and by definition
we have τ⋆ ≥ 1. τ⋆ measures the transient response of a
non-switching system with state matrix L̃⋆ and can be upper
bounded by its H∞ norm [20].

To the ease of exposition, we define a few constants:
ξ := min{∥B1:s∥-2+ ∥R-1

1:s∥-1+ ∥L⋆
1:s∥-2+ , σ(P⋆

1:s)},
Cϵ := 6∥A1:s∥2+∥B1:s∥+∥P⋆

1:s∥2+∥R-1
1:s∥+,

Cu
ϵ := 6C-1

ϵ ∥B1:s∥-2+ ∥P⋆
1:s∥-1+ ∥R-1

1:s∥-1+ , (10)

Cη := 2∥A1:s∥2+∥B1:s∥4+∥P⋆
1:s∥3+∥R-1

1:s∥2+,
Cu

η := 6C-1
η ,

Γ⋆ := max{∥A1:s∥+, ∥B1:s∥+, ∥P⋆
1:s∥+, ∥K⋆

1:s∥+}.

ϵ̄K :=
1− ρ⋆

2
√
sτ⋆(1+2∥L⋆

1:s∥)∥B1:s∥

In the following, we will show that despite being coupled,
cDARE for MJS-LQR satisfies nice local Lipschitz proper-
ties. To be more precise, we show that if the approximate
MJS is accurate enough, i.e., ϵ and η are sufficiently small,
we can guarantee that, not only the positive definite solution
P̂1:s to the perturbed cDARE uniquely exists, but also P̂1:s

is guaranteed to be close to P⋆
1:s.

Theorem 5. Under Assumption 3, and as long as ϵ ≤
min

{
Cu

ϵ ξ(1−ρ⋆)2

204nsτ⋆2 , ∥B1:s∥
}

, η ≤ Cu
η ξ(1−ρ⋆)2

48nsτ⋆2 , the perturbed

cDARE in (7) is guaranteed to have a unique solution P̂1:s

in {X1:s : Xi ⪰ 0, ∀i} such that P̂i ≻ 0 for all i and

∥P̂1:s −P⋆
1:s∥ ≤

√
nsτ⋆

1− ρ⋆
(Cϵϵ+ Cηη). (11)

From the constants, we see we would have milder require-
ments on ϵ and η and a tighter bound on ∥P̂1:s −P⋆

1:s∥
when (i) ∥A1:s∥, ∥B1:s∥, (ii) ∥L⋆

1:s∥, τ⋆, and (iii) ∥R-1
1:s∥ are

smaller. These translate to the cases when (i) the true MJS is
easier to stabilize; (ii) the closed-loop MJS under the optimal
controller is more stable; and (iii) the input dominates more
in the cost function. The role of τ⋆ in this theorem is closely
related to the damping property in ARE perturbation analysis
[12]. The coefficients for ϵ and η on the RHS of (11) are also
known as condition numbers in algebraic Riccati equation
sensitivity literature [14].

Note that the perturbation upper bound in Theorem 5,
when setting s = 1 and η = 0, is consistent with [4,
Proposition 1] developed for the LTI case except that we
suffer an additional

√
n term. This is because, due to the

coupled nature of P̂1:s through cDARE, we proceed by first
vectorizing and stacking cDARE into a single equation to
evaluate [vec(P̂1)

⊺, · · · , vec(P̂s)
⊺]⊺, then convert it back to

P̂1:s through reshaping. Certain norm equivalency arguments
(Fact 2) are needed to carry perturbation results through
this back-and-forth reshaping steps, which produces this
additional

√
n. On the other hand, these steps and thus the√

n term are not needed for the LTI case, since only a single
Riccati equation is involved.

It is easy to extend this result to the cases when an
approximate Q̂1:s with ∥Q̂1:s−Q1:s∥≤ϵ is used in place of
Q1:s in the computations, which can be useful when the
cost includes a term of the form ∥yt∥2 where yt=Cω(t)xt

represents the output, and we only have an approximate
parameter Ĉ1:s. In this case, Qi=C⊺

i Ci and Q̂i=Ĉ⊺
i Ĉi.

In the next result, we leverage Theorem 5 to show how
the controller K̂1:s computed from a perturbed cDARE so-
lution deviates from the optimal one, i.e., how ∥K̂1:s−K⋆

1:s∥
depends on ϵ and η, and when K̂1:s stabilizes the true
MJS (such that Ĵ will be bounded). Moreover, with the
help of [21, Lemma 3], which provides a relation between
suboptimality gap Ĵ−J⋆ and ∥K̂1:s−K⋆

1:s∥, we establish an
upper bound for Ĵ−J⋆ in terms of ϵ and η.

Theorem 6. Under Assumptions 3, suppose ϵ and η
satisfy the bounds in Theorem 5 and Cϵϵ + Cηη ≤
(1−ρ⋆)min{Γ⋆,σ(R1:s)

2 ϵ̄K}
28

√
nsτ⋆Γ3

⋆(σ(R1:s)+Γ3
⋆)

. Then CE controller K̂1:s stabilizes



the true MJS and

∥K⋆
1:s−K̂1:s∥ ≤ 28

√
nsτ⋆Γ3

⋆
(σ(R1:s)+Γ3

⋆)

(1− ρ⋆)σ(R1:s)2
(Cϵϵ+Cηη) (12)

Ĵ − J⋆ ≤ 1600σ2
w
s2.5n1.5 min{n, p}τ⋆3Γ6

⋆

(1− ρ⋆)3

· (∥R1:s∥+ Γ3
⋆)

3

σ(R1:s)4
(Cϵϵ+Cηη)

2. (13)

This result states that the suboptimality has quadratic
dependency on the uncertainties ϵ and η, and degrades when
the MJS has larger number of modes s, system order n, or
noise variance σ2

w. Similar to the earlier discussion, Theorem
6 is also consistent with its LTI counterpart [4, Theorem 1]
except the n term.

Our sub-optimality result has important implications in
data-driven control for MJS. Suppose the uncertainties ϵ and
η in the system dynamics and the transition matrix are due to
estimation errors induced by a system identification proce-
dure that uses T samples. Then, if the estimation error decays
as O(1/

√
T ) (which is typical for ϵ as in learning LTI [22],

[23] and for η in learning Markov chains [24]), Theorem 6
implies that the suboptimality decays as O(1/T ). Thus, given
a desired sub-optimality level for the CE controller, one can
use this relation to infer the required number of samples,
which has been employed in our companion paper [19] to
establish regret analysis for adaptive control.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to
support our proposed theory. We fix n=10 and p=5. The true
system matrices (A1:s,B1:s) were generated randomly from
the standard normal distribution. We scaled each Ai to have
spectral radius equal to 0.3 to obtain a mean square stable
MJS. We set Qi=Q

i
Q⊤

i
,Ri=RiR

⊤
i , Âi=Ai+ϵAAi, and

B̂i=Bi+ϵBBi, where Q
i
, Ri, Ai, and Bi were generated

randomly from the standard normal distribution; and ϵA and
ϵB are some fixed scalars. Here we experimentally study
the influences of perturbation on A1:s and B1:s separately
with ϵA and ϵB. Note that ϵ defined in (6) is equal to
max{ϵA, ϵB}. The true Markov transition matrix T was
sampled from a Dirichlet distribution Dir((s−1)·Is+1), and
we let the approximate T̂ = T+E, where the perturbation
E = ηT(Dir((s− 1) · Is + 1))− T̂) for ηT ∈ [0, 1].

We study how the Riccati solution perturbation
and sub-optimality gap vary with ϵA, ϵB, ηT ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.3} and the number of modes
s ∈ {10, 20, 30, 40}. For each choice of ϵA, ϵB, and ηT, we
run 100 experiments and record the respective maximums of
∆P := maxi ∥P̂i−P⋆

i ∥/∥P⋆
i ∥ and ∆J := (Ĵ−J⋆)/J⋆ over

all 100 runs. In Figures 1 and 2, we have four plots showing
∆P and ∆J versus uncertainties (i) ϵA (ϵB = ηT = 0),
(ii) ϵB (ϵA = ηT = 0), (iii) ηT (ϵA = ϵB = 0), and (iv)
ϵ = ϵA = ϵB = ηT.

Figure 1 presents four plots that demonstrate how ∆P

changes as ϵA, ϵB, ηT, and ϵ increase, respectively. Each
curve on the plot represents a fixed number of modes
s. These empirical results are all consistent with (11). In
particular, Figure 1 (right) shows that given the uncertainty

in the system matrices and in the Markov transition matrix
is bounded by ϵ, the perturbation bound to coupled Riccati
equations has the rate O(ϵ) which degrades linearly as
ϵ increase. Further, it can be easily seen that the gaps
indeed increase with the number of modes in the system.
Figure 2 demonstrates the relationship between the relative
suboptimality ∆J and the five parameters ϵA, ϵB, ηT, ϵ and
s. As can be seen in Figure 2 (right), given the uncertainty
in the system matrices and in the Markov transition matrix
is bounded by ϵ, the perturbation bounds to the optimal cost
decay quadratically which is consistent with our theory.

V. CONCLUSIONS

In this work, we provide a perturbation analysis for
cDARE, which arise in the solution of MJS-LQR, and an
end-to-end suboptimality guarantee for certainty equivalence
control for MJS-LQR. Our results show the robustness of
the optimal policy to perturbations in system dynamics and
establish the validity of the certainty equivalent control in
a neighborhood of the original system. This work opens
up multiple future directions. First, with proper system
identification algorithms, we can analyze model-based on-
line/adaptive algorithms where control policy is updated con-
tinuously over a single trajectory. Second, a natural extension
would be to study MJS with output measurements where
states are only partially observed, i.e., the LQG setting. This
will require considering the dual coupled Riccati equations
for filtering.
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APPENDIX

A. Useful Facts

Fact 1 (Matrix Facts). For arbitrary matrices M,N,X with
appropriate dimensions, we have the following facts.

1) If M,N ⪰ 0, then

∥N(I+MN)-1∥ ≤ ∥N∥, (14)

∥(I+MN)-1∥ ≤ 1 + ∥N∥∥M∥. (15)

2) If M and M+N are invertible, then
(M+N)-1 = M-1 −M-1N(M+N)-1

= M-1 − (M+N)-1NM-1.
(16)

3) If I+M and I+N are invertible, then

(I+M)-1−(I+N)-1=(I+M)-1(N−M)(I+N)-1. (17)

4) vec(MXN) = (N
⊺ ⊗M)vec(X). (18)

5) For a collection of matrices M1:s, and for all i ∈ [s],
∥φi(M1:s)∥ = ∥

∑s

j=1
[T]ijMj∥ ≤ ∥M1:s∥. (19)

In Fact 1, (14) is due to [4, Lemma 7] (in their supple-
ment); to see (15), first note that (I+MN)-1 = I−MN(I+
MN)-1 by matrix inversion lemma, and then apply (14). (16)
and (17) also follow from matrix inversion lemma.

Fact 2. For nxn matrices X1:s, let X=diag(X1:s). Let
˜vec(·) be the operator that vectorizes all diagonal blocks

of X into a vector, i.e. ˜vec(X):=(vec(X1), . . . , vec(Xs)).
Let ˜vec-1 denote the inverse, i.e. ˜vec-1( ˜vec(X)) = X. Then,

∥ ˜vec∥ := sup
X=diag(X1:s),∥X∥=1

∥ ˜vec(X)∥ (i)
=

√
ns (20)

∥ ˜vec-1∥ := sup
∥x∥=1

∥ ˜vec-1(x)∥ (ii)
= 1. (21)

Fact 2 follows by noting that (i) achieves the supremum
when Xi = In for all i and (ii) achieves the supremum when
x = (1, 0, . . . , 0). For a matrix M and perturbation ∆, we
have the following result adapted from [4, Lemma 5].



Fact 3. Let ρ := ρ(M) and τ := supk∈N ∥Mk∥/ρk. Then,
(a) ρ(M+∆)≤τ∥∆∥+ρ; (b) ∥(M+∆)k∥ ≤ τ

(
τ∥∆∥+ρ

)k
.

Fact 4. Consider cDARE(A1:s,B1:s,T) for a generic
MJS(A1:s,B1:s,T) and LQR cost matrices Q1:s,R1:s. As-
sume Qi,Ri ≻ 0 for all i ∈ [s]. Then, if there exists a
positive definite solution P1:s to cDARE(A1:s,B1:s,T), then
it is the unique solution among {P1:s : Pi ⪰ 0,∀ i ∈ [s]}.

To see this, first note that cDARE(A1:s,B1:s,T) can be
written as the Joseph stabilized form [25, (2.2-62)], i.e.
Pi −L⊺

i φi(P1:s)Li = K⊺
i RiKi +Qi where Ki = −

(
Ri +

B⊺
i φi(P1:s)Bi

)-1
B⊺

i φi(P
⋆
1:s)Ai and Li := Ai + BiKi.

Since Qi ≻ 0, we know by Lemma 2 the closed-loop
MJS xt+1=Lω(t)xt is MSS. Then one can obtain Fact 4 by
invoking [9, Lemma A.14] which says cDARE has at most
one solution with resulting controller stabilizes the MJS.

B. Proof of Theorem 5

We first provide the road map of the proof.
(a) We construct an operator K(X1:s) using the difference

between the true cDARE(A1:s,B1:s,T) and perturbed
cDARE(Â1:s, B̂1:s, T̂), whose fixed point X⋆

1:s (if ex-
ists) guarantees P̂1:s := P⋆

1:s+X⋆
1:s to be a solution to

the perturbed cDARE(Â1:s, B̂1:s, T̂).
(b) We show when ϵ, η are small, K(X1:s) is a contraction

mapping on a closed set Sν whose radius ν is a function
of ϵ and η. Thus, there exists a unique fixed point
X⋆

1:s ∈ Sν and ∥P̂1:s −P⋆
1:s∥ = ∥X⋆

1:s∥ ≤ ν(ϵ, η).
(c) Finally, we show P̂1:s is unique by showing P̂i ≻ 0

and then invoking Fact 4.
1) Construct operator K: First we define a few notations

for the ease of exposition. For all i ∈ [s], let Si := BiR
-1
i B⊺

i

and Ŝi := B̂iR
-1
i B̂⊺

i . Define block diagonal matrices A, Â,
B, B̂, Q, R, P⋆, P̂, K⋆, L⋆, S, Ŝ, P, X, Φ(X), Φ̂(X)
such that their ith diagonal blocks are given by Ai, Âi, Bi,
B̂i, Qi, Ri, P⋆

i , P̂i, K⋆
i , L⋆

i , Si, Ŝi, Pi, Xi, φi(X1:s),
φ̂i(X1:s) respectively. Note that Pi,Xi ⪰ 0 are just generic
variables to be used in function arguments. We will see many
equations that hold for each single block also hold for the
diagonally concatenated notations.

We have K⋆ = −(R +B⊺Φ(P⋆)B)-1B⊺Φ(P⋆)A from
(5), then using the matrix inversion lemma, we can get

L⋆ = A+BK⋆ = (I+ SΦ(P⋆))-1A. (22)
Furthermore, by diagonally concatenating cDARE (4) and
then applying the matrix inversion lemma again, we have

X = A
⊺
Φ(X)(I+ SΦ(X))-1A+Q. (23)

Then, we define the following Riccati difference function
using the difference between LHS and RHS of (23), with P
as argument and A,B,T as parameters:
F(P;A,B,T):=P−A

⊺
Φ(P)(I+SΦ(P))-1A−Q. (24)

Though not explicitly listed, Φ and S on the RHS of (24)
depend on T and B respectively. Since P⋆

1:s is the solution to
cDARE(A1:s,B1:s,T), we have F(P⋆;A,B,T)=0. Simi-
larly, if there exists solution P̂1:s to cDARE(Â1:s, B̂1:s, T̂),
then we also have F(P̂; Â, B̂, T̂)=0.

For X such that P⋆ +X ⪰ 0, we know I + S(P⋆ +X)
is invertible. Then, for F(P⋆ +X;A,B,T), we have

F(P⋆ +X;A,B,T)
(16)
=P⋆+X−A

⊺
Φ(P⋆+X) ·

[
(I+SΦ(P⋆))-1−

(I+SΦ(P⋆+X))-1︸ ︷︷ ︸
=:Γ

SΦ(X)(I+SΦ(P⋆))-1
]
A−Q

=P⋆+X−A
⊺
Φ(P⋆+X)(I−ΓSΦ(X))(I+SΦ(P⋆))-1A−Q

(22)
=P⋆+X−A

⊺
Φ(P⋆+X)(I−ΓSΦ(X))L⋆−Q

(i)
=X−A

⊺
Φ(P⋆+X)(I−ΓSΦ(X))L⋆+A

⊺
Φ(P⋆)L⋆

=X−A
⊺
[Φ(P⋆+X)(I−ΓSΦ(X))−Φ(P⋆)]L⋆

(22)
=X−L⋆⊺(I+Φ(P⋆)S) [Φ(P⋆+X)(I−ΓSΦ(X))−Φ(P⋆)]L⋆

=X−L⋆⊺ (I+Φ(P⋆)S) [−Φ(P⋆)ΓS+I−Φ(X)ΓS]︸ ︷︷ ︸
=:Λ

Φ(X)L⋆

where (i) follows from P⋆−Q = A⊺Φ(X)L⋆ which can be
seen from the fact F(P⋆;A,B,T) = 0. By expanding Λ,
one can check Λ = I − Φ(X)ΓS. Plugging this back and
using the definition of Γ, we have

F(P⋆ +X;A,B,T) = X− L⋆⊺Φ(X)L⋆+

L⋆⊺Φ(X)(I+ SΦ(P⋆) + SΦ(X))-1SΦ(X)L⋆. (25)
If we define
T (X)=X−L⋆⊺Φ(X)L⋆,

H(X)=L⋆⊺Φ(X)(I+SΦ(P⋆)+SΦ(X))-1SΦ(X)L⋆,
(26)

we can write F(P⋆ +X;A,B,T) as
F(P⋆ +X;A,B,T) = T (X) +H(X). (27)

We now study the invertibility of operator T . Let Yi :=
Xi − L⋆

i
⊺
φi(X1:s)L

⋆
i , and Y := diag(Y1:s), then we see

Y = T (X) = X−L⋆⊺Φ(X)L⋆. Apply (18) to Yi, we have
vec(Yi) = (I−[T]ii ·L⋆

i
⊺⊗L⋆

i
⊺
)vec(Xi)−

∑
j ̸=i[T]ijL

⋆
i
⊺⊗

L⋆
i
⊺vec(Xj). Stacking this equation for all i, we have (I−

L̃⋆) ˜vec(X) = ˜vec(Y), where ˜vec(·) is defined in Fact 2.
From Sec III, we know ρ(L̃⋆) < 1, thus (I−L̃⋆) is invertible,
and inverse operator T -1 exists and is given by

X = T -1(Y) = ˜vec-1 ◦ (I− L̃⋆)-1 ◦ ˜vec(Y), (28)
where ◦ denotes operator composition, and ˜vec(·)-1 is de-
fined in Fact 2. With T -1, we define the following operator:

K(X) := T -1(F(P⋆ +X;A,B,T)−
F(P⋆ +X; Â, B̂, T̂)−H(X)

)
. (29)

Suppose there exists a fixed point X⋆ for K, then we see
F(P⋆ +X⋆; Â, B̂, T̂) = F(P⋆ +X⋆;A,B,T)−T (X⋆)−
H(X⋆) = 0, i.e. P̂1:s = P⋆

1:s + X⋆
1:s is a solution to the

perturbed cDARE(Â1:s, B̂1:s, T̂).

2) K is a Contraction: We will show K(X) is a contrac-
tion mapping on the closed set
Sν := {X : ∥X∥ ≤ ν,X = diag(X1:s),P

⋆ +X ⪰ 0} (30)
so that K(X) is guaranteed to have a fixed point in Sν . To do
this, we first present the following lemma (proof in Appendix
D) regarding properties of K(X).

Lemma 7. Assume ϵ ≤ min{∥B∥, 1}. Suppose X,X1,X2 ∈



Sν with ν ≤ min{1, ∥S∥-1}, then

∥K(X)∥ ≤
√
nsτ⋆

1− ρ⋆
(
∥L⋆∥2∥S∥ν2+

Cϵϵ+Cηη

2

)
, (31)

∥K(X1)−K(X2)∥ ≤
√
nsτ⋆

1− ρ⋆
∥X1 −X2∥

·
(
3∥L⋆∥2∥S∥ν + ∥B∥2+∥R-1∥+(51ϵ/Cu

ϵ + 2η/Cu
η )

)
. (32)

To use this lemma, we pick ν =
√
nsτ⋆

1−ρ⋆ (Cϵϵ+ Cηη) .
We first show K maps Sν into itself and then show it is a
contraction mapping. Plugging in the upper bounds for ϵ and
η in the premises of Theorem 5, we have

ν ≤ min

{
1,

1

∥S∥
,

1− ρ⋆

12
√
nsτ⋆∥L⋆∥2∥S∥

,
σ(P⋆)

12

}
, (33)

Following the premise upper bound of ϵ in Theorem 5
we have ϵ≤min{∥B∥, 1}. This together with (33) makes
Lemma 7 applicable, and we get ∥K(X)∥≤ 1

12ν + 1
2ν=

7
12ν

by cancelling off ϵ and η in (31) with the definition of ν,
and applying the third upper bound for ν in (33). We know
ν≤σ(P⋆)/12 from (33), we have ∥K(X)∥≤ 7

144σ(P
⋆), thus

P⋆ + K(X)≻0. This shows K(X) ∈ Sν , i.e. K maps Sν

into itself. Plugging the premise upper bounds for ϵ, η in
Theorem 5 and the third upper bound for ν in (33) into
(32) gives ∥K(X1)−K(X2)∥≤ 13

24∥X1 −X2∥, i.e. K(X) is
a contraction mapping on Sν , which means K(X) has a
unique fixed point X⋆∈Sν . From the discussion below (29),
we know P̂1:s is a solution to cDARE(Â1:s, B̂1:s, T̂) and
∥P̂1:s −P⋆

1:s∥=∥X⋆
1:s∥=∥X⋆∥≤ν, which shows (11).

3) Uniqueness of P̂1:s: Note that X⋆∈Sν gives ∥X⋆∥<ν,
and using (33), we have ∥X⋆∥<σ(P⋆), thus P⋆ + X⋆≻0.
This implies P̂i=P⋆

i +X⋆
i≻0 for all i. By Fact 4, we know

P̂1:s is the only possible solution to cDARE(Â1:s, B̂1:s, T̂)
among {X1:s : Xi ⪰ 0,∀i}.

C. Proof of Theorem 6
We first provide the road map of the proof.

(a) We bound the controller difference ∥K⋆
1:s − K̂1:s∥ in

terms of ∥P̂1:s −P⋆
1:s∥ and provide conditions under

which K̂1:s stabilizes the true MJS(A1:s,B1:s,T).
(b) For Ĵ incurred by the stabilizing K̂1:s, we bound the

suboptimality gap Ĵ − J⋆ in terms of ∥K⋆
1:s − K̂1:s∥.

(c) We Combine steps (a), (b) and Theorem 5 to obtain the
final result.

1) Properties of K̂1:s: We show that when P̂1:s is close
to P1:s, then K̂1:s is also close to K1:s.
Lemma 8 (Controller mismatch). Suppose ∥P̂1:s −P⋆

1:s∥ ≤
f(ϵ, η) for some function f(ϵ, η) such that max{ϵ, η} ≤
f(ϵ, η) ≤ Γ⋆. Then, under Assumption 3, we have

∥K⋆
1:s − K̂1:s∥ ≤ 28Γ3

⋆

(σ(R1:s) + Γ3
⋆)

σ(R1:s)2
f(ϵ, η) (34)

Proof. Recall K⋆
i=−

(
Ri+B⊺

i φi(P
⋆
1:s)Bi

)-1
B⊺

i φi(P
⋆
1:s)Ai

and K̂i=−
(
Ri+B̂⊺

i φ̂i(P̂1:s)B̂i

)-1
B̂⊺

i φ̂i(P̂1:s)Âi. As an
auxiliary step, we define K̃i:=−

(
Ri+B̂⊺

i φi(P̂1:s)B̂i

)-1 ·
B̂⊺

i φi(P̂1:s)Âi. Then, we have

∥K⋆
i − K̂i∥ ≤ ∥K⋆

i − K̃i∥+ ∥K̃i − K̂i∥. (35)
Note that ∥K⋆

1:s − K̂1:s∥ = maxi ∥K⋆
i − K̂i∥, thus it suf-

fices to bound ∥K⋆
i − K̃i∥ and ∥K̃i − K̂i∥ respectively. For

∥K⋆
i − K̃i∥, we can see ∥K⋆

i − K̃i∥ ≤ MδN +δMN where
M=∥

(
Ri+B

⊺
iφi(P

⋆
1:s)Bi

)-1∥, N=∥B̂⊺
iφi(P̂1:s)Âi∥

δM=∥
(
Ri+B

⊺
iφi(P

⋆
1:s)Bi

)-1−(
Ri+B̂

⊺
iφi(P̂1:s)B̂i

)-1∥
δN=∥B⊺

iφi(P
⋆
1:s)Ai−B̂

⊺
iφi(P̂1:s)Âi∥

We next upper bound M, δN , δM , and N . Since we assume
Ri ≻ 0, it is easy to see M = ∥

(
Ri+B⊺

i φi(P
⋆
1:s)Bi

)-1∥ ≤
1

σ(Ri)
. For δN , let ∆Ai

= Âi−Ai, ∆Bi
= B̂i−Bi, ∆Pi

=

P̂i −P⋆
i , then we have

δN = ∥B⊺
iφi(P

⋆
1:s)Ai−B̂

⊺
iφi(P̂1:s)Âi∥

= ∥B⊺
iφi(P

⋆
1:s)Ai−(Bi+∆Bi)

⊺

·
[
φi(P

⋆
1:s)Ai+φi(∆P⋆

1:s
)Ai+φi(P

⋆
1:s)∆Ai+φi(∆P⋆

1:s
)∆Ai

]
∥

= ∥B⊺
iφi(P

⋆
1:s)Ai−

[
B

⊺
iφi(P

⋆
1:s)Ai+B

⊺
iφi(∆P⋆

1:s
)Ai

+B
⊺
iφi(P

⋆
1:s)∆Ai+B

⊺
iφi(∆P⋆

1:s
)∆Ai+∆

⊺
Bi

φi(P
⋆
1:s)Ai

+∆
⊺
Bi

φi(∆P⋆
1:s

)Ai+∆
⊺
Bi

φi(P
⋆
1:s)∆Ai+∆

⊺
Bi

φi(∆P⋆
1:s

)∆Ai

]
∥

(19)
≤ ∥Ai∥∥Bi∥f(ϵ, η)+∥Bi∥∥P⋆

1:s∥ϵ+∥Bi∥f(ϵ, η)ϵ
+∥Ai∥∥P⋆

1:s∥ϵ+∥Ai∥f(ϵ, η)ϵ+∥P⋆
1:s∥ϵ2+f(ϵ, η)ϵ2,

≤ 3Γ2
⋆f(ϵ, η),

where the last line follows from the assumption that ϵ <
f(ϵ, η). For δM , we have
δM = ∥

(
Ri+B

⊺
iφi(P

⋆
1:s)Bi

)-1−(
Ri+B̂

⊺
iφi(P̂1:s)B̂i

)-1∥
(16)
≤ ∥

(
Ri+B

⊺
iφi(P

⋆
1:s)Bi

)-1∥ · ∥(Ri+B̂
⊺
iφi(P̂1:s)B̂i

)-1∥
· ∥B̂⊺

iφi(P̂1:s)B̂i−B
⊺
iφi(P

⋆
1:s)Bi∥

≤ 3Γ2
⋆f(ϵ, η)

σ(Ri)2
.

Similarly, we have the following for N .
N = ∥B̂⊺

iφi(P̂1:s)Âi∥
= ∥B⊺

iφi(P
⋆
1:s)Ai+B

⊺
iφi(∆P⋆

1:s
)Ai+B

⊺
iφi(P

⋆
1:s)∆Ai

+B
⊺
iφi(∆P⋆

1:s
)∆Ai+∆

⊺
Bi

φi(P
⋆
1:s)Ai+∆

⊺
Bi

φi(∆P⋆
1:s

)Ai

+∆
⊺
Bi

φi(P
⋆
1:s)∆Ai+∆

⊺
Bi

φi(∆P⋆
1:s

)∆Ai∥
≤

(
∥Ai∥∥Bi∥+∥Ai∥∥P⋆

1:s∥+∥Bi∥∥P⋆
1:s∥+∥Ai∥ϵ+∥Bi∥ϵ

+∥P⋆
1:s∥ϵ+ϵ2) · f(ϵ, η

)
+∥Ai∥∥Bi∥∥P⋆

1:s∥
≤ 3Γ2

⋆f(ϵ, η)+Γ3
⋆.

Combining the bounds for M, δN , δM , and N we obtained
thus far, we have ∥K⋆

i − K̃i∥ ≤ 12Γ2
⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η).
Using similar techniques, for the other term on the RHS of
(35), we can show ∥K̃i − K̂i∥ ≤ 16Γ3

⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

η. Recall
we assume η ≤ f(ϵ, η), then by triangle inequality, we have
∥K⋆

i − K̂i∥ ≤ 28Γ3
⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η).

For K̂1:s, let L̂i:=Ai +BiK̂i and define the augmented
closed-loop state matrix L̃◦ ∈ Rsn2xsn2

with ij-th n2×n2

block given by [L̃◦]ij :=[T]ijL̂
⊺
i ⊗ L̂⊺

i .

Lemma 9 (Stabilizability of K̂). Suppose ∥K̂1:s −K⋆
1:s∥ ≤

1−ρ⋆

2
√
sτ⋆(1+2∥L⋆

1:s∥)∥B1:s∥
=:ϵ̄K, then (a) ρ(L̃◦) < 1+ρ⋆

2 , i.e.

K̂1:s is a stabilizing controller; (b) ∥(L̃◦)k∥ ≤ τ⋆( 1+ρ⋆

2 )k;
Proof. What remains to show is that K̂1:s stabilizes the true
MJS. We let ∆Ki :=K̂i−K⋆

i and L̂i:=Ai+BiK̂i, then we
see L̂i = L⋆

i + Bi∆Ki
. Under controller K̂1:s, we define

the augmented closed-loop state matrix L̃◦ ∈ Rsn2xsn2

with
ij-th n2×n2 block given by [L̃◦]ij :=[T]ijL̂

⊺
i ⊗L̂⊺

i . Note that



[L̃◦]ij−[L̃⋆]ij=[T]ij((Bi∆Ki
)⊺⊗(Bi∆Ki

)⊺+(Bi∆Ki
)⊺⊗L⋆

i
⊺

+L⋆
i
⊺⊗(Bi∆Ki

)⊺), then ∥[L̃◦]ij−[L̃⋆]ij∥≤[T]ij(∥Bi∥2
·∥∆Ki∥2+2∥Bi∥∥L⋆

i ∥∥∆Ki∥)≤[T]ij(1+2∥Li∥)∥Bi∥∥∆Ki∥
≤[T]ij

1−ρ⋆

2
√
sτ⋆ . Using Cauchy-Schwartz inequality, we have

∥L̃◦−L̃⋆∥≤
(∑

i,j ∥[L̃◦]ij−[L̃⋆]ij∥2
)0.5≤ 1−ρ⋆

2τ⋆ . Finally, we
can conclude the proof by invoking Fact 3.

2) Ĵ − J⋆ vs. ∥K⋆
1:s − K̂1:s∥: Adapting [21, Lemma 3-

(2)] to noisy MJS and infinite-horizon average cost case, we
have the following result.

Lemma 10. Suppose K1:s is a stabilizing controller. Let
Πi := π∞(i)In and Π := diag(Π1:s). Let Σ1:s be the
solution to ˜vec(Σ) = L̃◦⊺ ˜vec(Σ) + σ2

w ˜vec(Π), where Σ :=
diag(Σ1:s). Then, Ĵ − J⋆ =

∑
i tr

(
Σi(K̂i − K⋆

i )
⊺(Ri +

B⊺
i φi(P

⋆
1:s)Bi(K̂i −K⋆

i ))
)

In Lemma 10, the equation described by Σ is essentially
the coupled Lyapunov equation for MJS, and it can be shown
Σi = limt→∞ E[xtx

⊺
t 1ω(t)=i] where xt is the state under

controller K̂1:s. Combining Lemma 9 and 10, we have

Corollary 11. Suppose ∥K̂1:s −K⋆
1:s∥ ≤ ϵ̄K, then

Ĵ−J⋆≤2σ2
ws1.5

√
nmin{n, p}τ⋆

1− ρ⋆
(∥R1:s∥+Γ3

⋆)∥K̂1:s−K⋆
1:s∥2.

Proof. We first bound ∥Σi∥ in Lemma 10. Similar to
(28), we have Σ = σ2

w · ˜vec-1 ◦ (I − L̃◦⊺)-1 ◦
˜vec(Π). Using Fact (2) and the sub-multiplicative prop-

erty of operator norms, we have ∥Σi∥ ≤ ∥Σ∥ ≤√
ns∥(I− L̃◦⊺)-1∥∥Π∥. Note that ∥Π∥ ≤ 1 and

∥(I− L̃◦⊺)-1∥ = ∥
∑∞

k=0(L̃
◦)k∥ ≤

∑∞
k=0 ∥(L̃◦)k∥ ≤

2τ⋆

1−ρ⋆ , where the last inequality follows from Lemma 9

(b). Thus, ∥Σi∥ ≤ 2σ2
w

√
snτ⋆

1−ρ⋆ . Then, Lemma 10 gives
Ĵ−J⋆ ≤ s∥Σi∥(∥R1:s∥+∥B1:s∥2∥P⋆∥)∥K̂1:s −K⋆

1:s∥2F ≤
2σ2

ws1.5
√
nmin{n,p}τ⋆

1−ρ⋆ (∥R1:s∥+ Γ3
⋆)∥K̂1:s −K⋆

1:s∥2.

3) Proof of Theorem 6: To prove Theorem 6, we only
need to combine Theorem 5, Lemma 8, and Corollary 11. By
Theorem 5, we can choose f(ϵ, η) :=

√
nsτ⋆

1−ρ⋆ (Cϵϵ+Cηη) in

Lemma 8. The, when Cϵϵ+Cηη ≤ (1−ρ⋆)min{Γ⋆,σ(R1:s)
2ϵ̄K}

28
√
nsτ⋆Γ3

⋆(σ(R1:s)+Γ3
⋆)

,
the premise conditions max{ϵ, η} ≤ f(ϵ, η) ≤ Γ⋆ in
Lemma 8 and ∥K̂1:s −K⋆

1:s∥ ≤ ϵ̄K in Corollary 11
hold. Theorem 5 and Lemma 8 give ∥K⋆

1:s − K̂1:s∥ ≤
28

√
nsτ⋆Γ3

⋆
(σ(R1:s)+Γ3

⋆)
(1−ρ⋆)σ(R1:s)2

(Cϵϵ + Cηη) which shows (12).
Combining this with Corollary 11 shows (13).
D. Proof of Lemma 7

To ease the exposition, let P⋆
X:=P⋆+X and define

P⋆
X1

,P⋆
X1

similarly. Let ∆A:=Â−A, ∆B:=B̂−B, and
∆S:=Ŝ−S. We list a few preliminary results (when X∈Sν)
to be used later.

• ∥Φ(X)∥ ≤ ∥X∥, ∥Φ̂(X)∥ ≤ ∥X∥. (36)
• ∥Φ(X)− Φ̂(X)∥ ≤ η∥X∥. (37)
• max{∥P⋆

X∥, ∥Φ(P⋆
X)∥, ∥Φ̂(P⋆

X)∥} ≤ ∥P⋆∥+. (38)
• ∥S∥≤∥B∥2∥R-1∥, ∥∆S∥≤3∥B∥∥R-1∥ϵ,

∥Ŝ∥≤4∥B∥2∥R-1∥ (39)

• max
{
∥(I+ SΦ(P⋆

X))-1∥, ∥(I+ SΦ̂(P⋆
X))-1∥

}

≤ ∥B∥2+∥R-1∥+∥P⋆∥+ (40)

• max
{
∥(I+ ŜΦ(P⋆

X))-1∥, ∥(I+ ŜΦ̂(P⋆
X))-1∥

}
≤ 4∥B∥2+∥R-1∥+∥P⋆∥+.(41)

(38) is due to ν ≤ 1, and (39) uses ∥∆B∥≤ϵ≤∥B∥. (40)
and (41) follows from (15), (38), (39).

Now, we are ready to begin the main proof. We first define
G1(X):=F(P⋆

X;A,B, T̂)−F(P⋆
X; Â, B̂, T̂)

G2(X):=F(P⋆
X;A,B,T)−F(P⋆

X;A,B, T̂).

Then, we have the following decomposition.
K(X) = T -1(G1(X) + G2(X)−H(X)), (42)

K(X1)−K(X2) = T -1(G1(X1)− G1(X2)

+ G2(X1)− G2(X2)−H(X1) +H(X2)) (43)
To bound the ∥K(X)∥ and ∥K(X1)−K(X2)∥, we will bound
∥T -1∥, ∥H(X)∥, ∥G1(X)∥, ∥G2(X)∥, ∥H(X1) − H(X2)∥,
∥G1(X1) −G1(X2)∥, ∥G2(X1)−G2(X2)∥ individually, for
any X,X1,X2∈Sν and then combine them using triangle
inequality and operator composition sub-multiplicativity, i.e.
∥K(X)∥ ≤ ∥T -1∥(∥G1(X)∥+ ∥G2(X)∥+ ∥H(X)∥) (44)

∥K(X1)−K(X2)∥ ≤ ∥T -1∥(∥G1(X1)−G1(X2)∥
+ ∥G2(X1)−G2(X2)∥+∥H(X1)−H(X2)∥) (45)

1) Bound ∥K(X)∥: By the definition of T -1 in (28),
we know T -1(Y) = ˜vec-1 ◦ (I − L̃⋆)-1 ◦ ˜vec(Y). Then,
for ∥T -1∥, similar to the proof for Corollary 11, we have
∥T -1∥ ≤

√
snτ⋆

1−ρ⋆ . By definition of H(X) in (27), we have
∥H(X)∥ ≤ ∥L⋆∥2∥S∥∥X∥2 ≤ ∥L⋆∥2∥S∥ν2, where (14) and
(36) are used. For term G1(X), using (17), we can decompose
it as
G1(X) =

−A
⊺
Φ̂(P⋆

X)(I+SΦ̂(P⋆
X))-1∆SΦ̂(P⋆

X)(I+ŜΦ̂(P⋆
X))-1A

+∆
⊺
AΦ̂(P⋆

X)(I+ŜΦ̂(P⋆
X))-1A+A

⊺
Φ̂(P⋆

X)(I+ŜΦ̂(P⋆
X))-1∆A

+∆
⊺
AΦ̂(P⋆

X)(I+ŜΦ̂(P⋆
X))-1∆A.

With properties (14), (38), (39), and the premise as-
sumption ϵ≤∥B∥, we can show ∥G1(X)∥≤3∥A∥2+∥B∥+
·∥P⋆∥2+∥R-1∥+ϵ. Similarly, we can show ∥G2(X)∥≤∥A∥2+
·∥B∥4+∥P⋆∥3+∥R-1∥2+η by invoking (14), (17), (37), (38),
(39), and (40). Finally, using the relation in (44), we can
show the upper bound for ∥K(X)∥ in (31).

2) Bound ∥K(X1)−K(X2)∥: We first derive
bounds for ∥H(X1)−H(X2)∥, ∥G1(X1)−G1(X2)∥, and
∥G2(X1)−G2(X2)∥. With the help of (17), the following
can be obtained.
H(X1)−H(X2) = L⋆⊺Φ(X1)(I+SΦ(P⋆

X1
))-1

· SΦ(X2−X1)(I+SΦ(P⋆
X2

))-1SΦ(X1)L
⋆

−L⋆⊺Φ(X2−X1)(I+SΦ(P⋆
X2

))-1SΦ(X2)L
⋆

−L⋆⊺Φ(X1)(I+SΦ(P⋆
X2

))-1SΦ(X2−X1)L
⋆.

(46)

Using (14), (36), and ν≤∥S∥-1, we have ∥H(X1)−H(X2)∥
≤3∥L⋆∥2∥S∥ν∥X2−X1∥. Similarly, ∥G1(X1)−G1(X2)∥≤
51∥A∥2+∥B∥5+∥P⋆∥3+∥R-1∥3+∥X2−X1∥ϵ and ∥G2(X1)−
G2(X2)∥≤2∥A∥2+∥B∥6+∥P⋆∥3+∥R-1∥3+∥X2−X1∥η can be
established. Plugging these results into the relation in (45)
shows the bound for ∥K(X1)−K(X2)∥ in (32)
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