

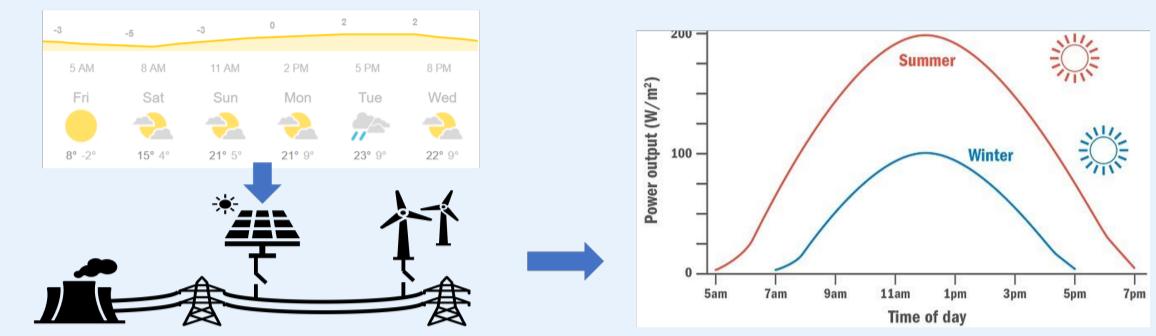
Identification and Adaptive Control of Markov Jump Systems: Sample Complexity and Regret Bounds

Yahya Sattar¹, Zhe Du², Davoud Ataee Tarzanagh², Necmiye Ozay², Laura Balzano², Samet Oymak¹

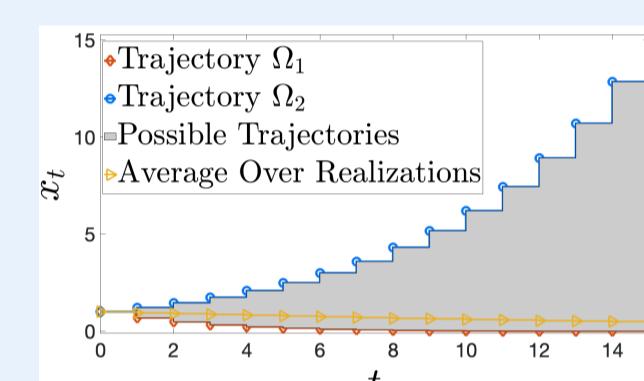
¹Department of Electrical and Computer Engineering, University of California, Riverside, ²Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor

Introduction

- Markov jump systems (MJS) are powerful for modeling a richer set of problems where the underlying dynamics can abruptly change over time.



- The statistical analysis for MJS is challenging:
 - The common stability of MJS is in the **mean-square** sense.
 - The convergence of an MJS trajectory depends heavily on the mode switching sequence. For example, state trajectories of a two-mode MJS $\begin{cases} x_{t+1} = 0.7x_t \\ x_{t+1} = 1.2x_t \end{cases}$ with $\mathbf{T} = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$, $\mathbf{x}_0 = 1$, $\Omega_1 = \{1, 1, \dots\}$, and $\Omega_2 = \{2, 2, \dots\}$.



- Mean-square stability \nRightarrow each individual mode being stable.
- Potential unstable realizations make non-asymptotic statistical analysis in learning and data-driven control difficult, e.g. no available light-tail inequality.

- Goal:** address these challenges to provide guarantees for non-asymptotic identification and adaptive control of MJS's.

Problem Formulation

- Markov Jump System (MJS)** $(\mathbf{A}_{1:s}, \mathbf{B}_{1:s}, \mathbf{T})$

$$\mathbf{x}_{t+1} = \mathbf{A}_{\omega(t)} \mathbf{x}_t + \mathbf{B}_{\omega(t)} \mathbf{u}_t + \mathbf{w}_t$$

- Active mode index: $\omega(t) \sim \text{Markov Chain}(\mathbf{T})$, ergodic $\mathbf{T} \in \mathbb{R}^{s \times s}$
- Mode k : state matrix $\mathbf{A}_k \in \mathbb{R}^{n \times n}$, input matrix $\mathbf{B}_k \in \mathbb{R}^{n \times p}$, $\forall k \in [s]$
- Process noise: $\mathbf{w}_t \sim \mathcal{N}(0, \sigma_w^2 \mathbf{I})$

Assumptions

- MJS dynamics $\mathbf{A}_{1:s}, \mathbf{B}_{1:s}, \mathbf{T}$ are *unknown*.
- Mean Square Stabilizability (MSS)** — exists $\mathbf{K}_{1:s}$ s.t. input $\mathbf{u}_t = \mathbf{K}_{\omega(t)} \mathbf{x}_t$ gives $\|\mathbb{E}[\mathbf{x}_t] - \mathbf{x}_\infty\| \rightarrow 0$, $\|\mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top] - \Sigma_\infty\| \rightarrow 0$ for some \mathbf{x}_∞ and Σ_∞ .

Linear Quadratic Regulator (LQR)

$$\underset{\mathbf{u}_{0:T}}{\text{minimize}} \quad J(\mathbf{u}_{0:T}) := \sum_{t=0}^T \mathbb{E} \left[\mathbf{x}_t^\top \mathbf{Q}_{\omega(t)} \mathbf{x}_t + \mathbf{u}_t^\top \mathbf{R}_{\omega(t)} \mathbf{u}_t \right]$$

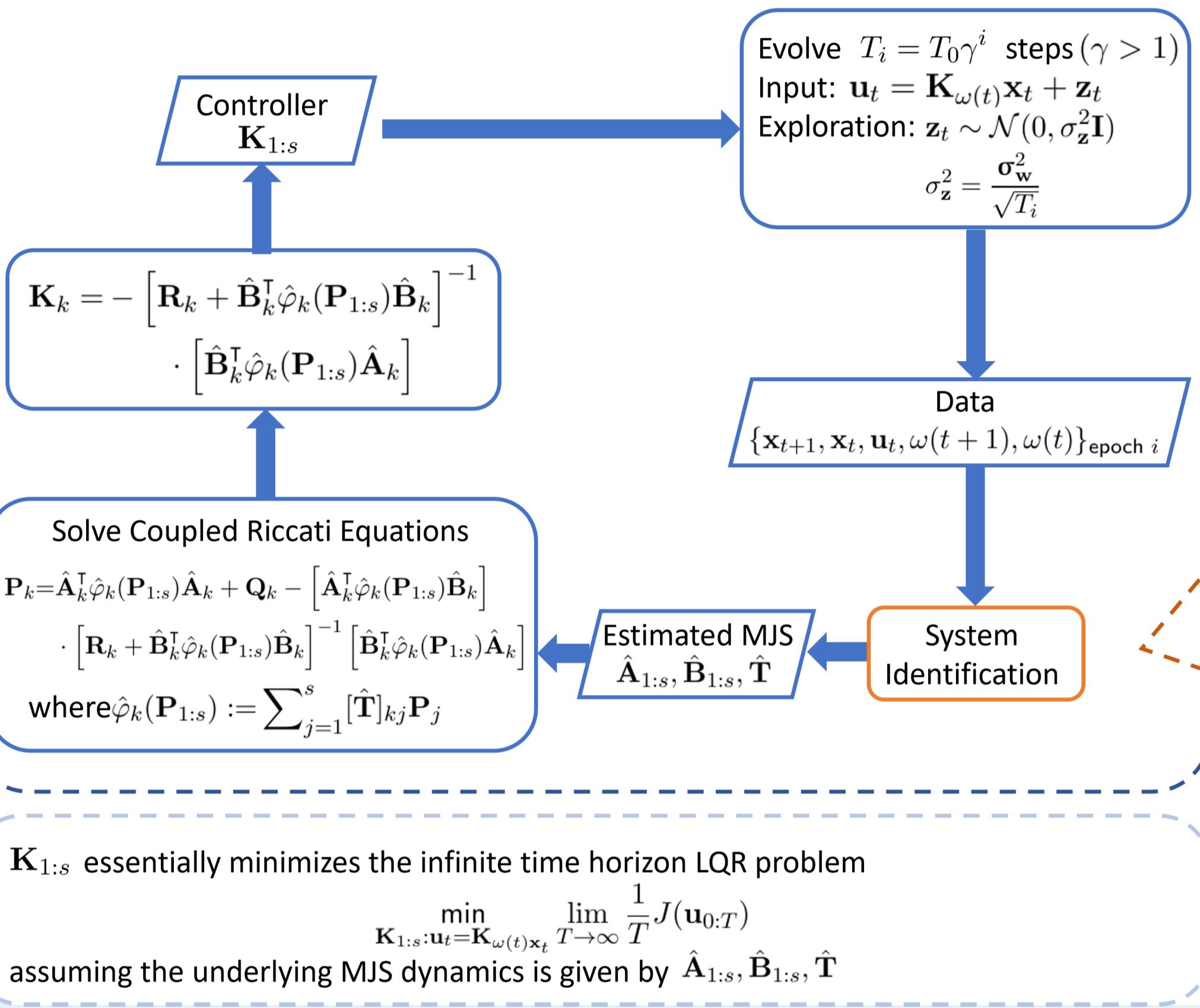
- Cost matrices: $\mathbf{Q}_k \succ 0, \mathbf{R}_k \succ 0, \forall k \in [s]$. At time t , \mathbf{x}_t and $\omega(t)$ are observed.

Goal

- Identify MJS dynamics $\mathbf{A}_{1:s}, \mathbf{B}_{1:s}, \mathbf{T}$ and solve LQR in *real time*.
- Performance guarantee
- Estimation error: $\|\hat{\mathbf{A}}_k - \mathbf{A}_k\|, \|\hat{\mathbf{B}}_k - \mathbf{B}_k\|, \|\hat{\mathbf{T}} - \mathbf{T}\|_\infty$
- Regret: $J - J^*$

Our Approach

Adaptive MJS LQR for Epoch i

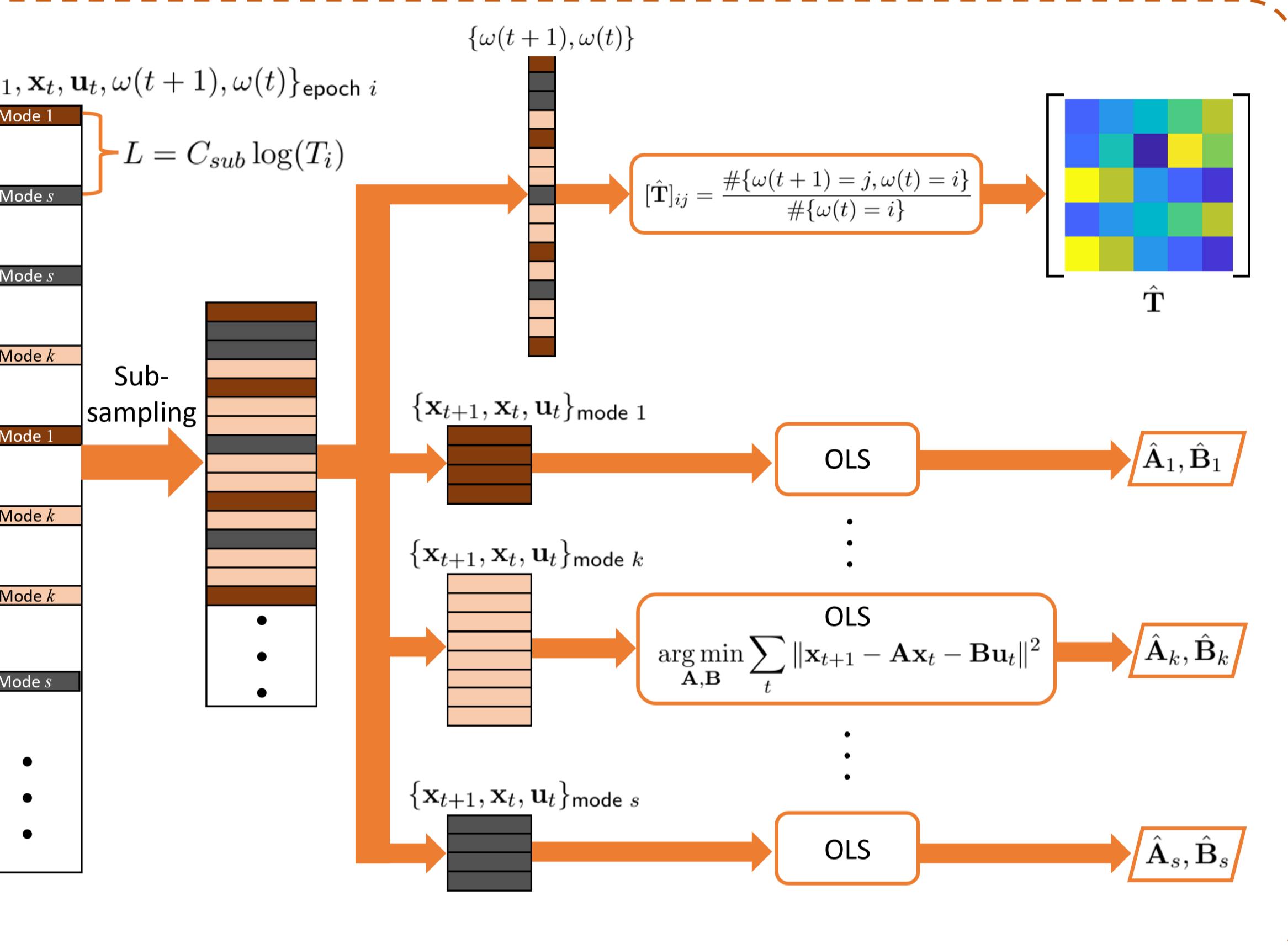


$\mathbf{K}_{1:s}$ essentially minimizes the infinite time horizon LQR problem

$$\min_{\mathbf{K}_{1:s}, \mathbf{u}_t = \mathbf{K}_{\omega(t)} \mathbf{x}_t} \lim_{T \rightarrow \infty} \frac{1}{T} J(\mathbf{u}_{0:T})$$

assuming the underlying MJS dynamics is given by $\hat{\mathbf{A}}_{1:s}, \hat{\mathbf{B}}_{1:s}, \hat{\mathbf{T}}$

System Identification



Theory

- System Identification** — under certain conditions, in epoch i , with prob. $1 - \delta$

$$\max \left\{ \|\hat{\mathbf{A}}_k - \mathbf{A}_k\|, \|\hat{\mathbf{B}}_k - \mathbf{B}_k\| \right\} \leq \tilde{\mathcal{O}} \left(\frac{\sigma_z + \sigma_w (n + p) \log(T_i)}{\sigma_z \pi_{\min} \sqrt{T_i}} \right),$$

$$\|\hat{\mathbf{T}} - \mathbf{T}\|_\infty \leq \tilde{\mathcal{O}} \left(\frac{1}{\pi_{\min}} \sqrt{\frac{\log(T_i)}{T_i}} \right).$$

- Can be applied to generic system identification problem outside of LQR setting.

- LQR** — under certain conditions, with prob. $1 - \delta$

$$\text{Regret}(T) \leq \tilde{\mathcal{O}}(\log^2(T) \sqrt{T}).$$

- When $\mathbf{B}_{1:s}$ are known, no exploration is needed, i.e. $\sigma_z = 0$, and guarantees improve:

$$\|\hat{\mathbf{A}}_k - \mathbf{A}_k\| \leq \tilde{\mathcal{O}} \left(\frac{(n + p) \log(T)}{\pi_{\min} \sqrt{T}} \right),$$

$$\text{Regret}(T) \leq \tilde{\mathcal{O}}(\log^3(T)).$$

Experiments

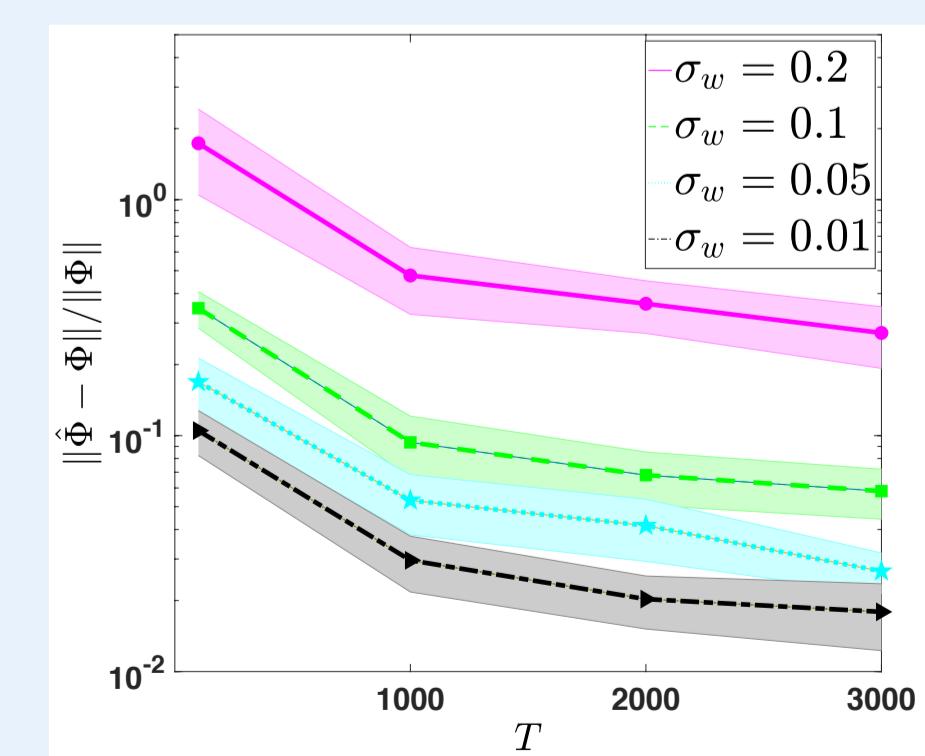
The depicted results are averaged over 50 independent runs.

System Identification (left)

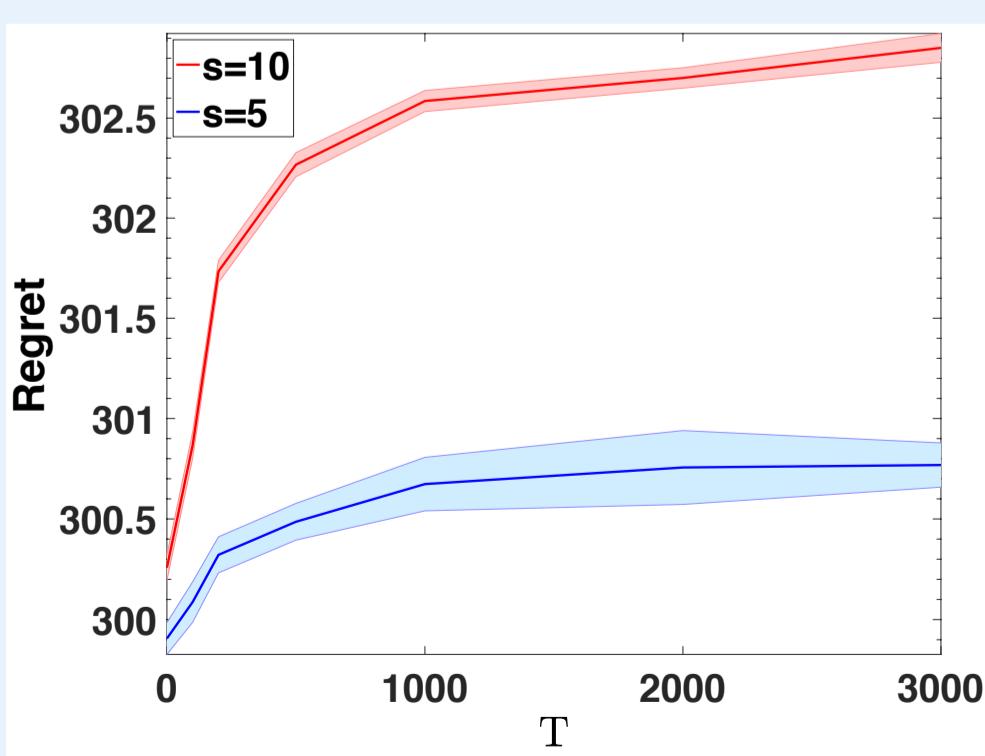
- Consider MJS with $n = 10$, $p = 8$, and $s = 10$. $(\mathbf{A}_{1:s}, \mathbf{B}_{1:s}, \mathbf{T})$ are generated randomly.
- $\hat{\Psi}_k := [\hat{\mathbf{A}}_k, \hat{\mathbf{B}}_k]$, $\Psi_k := [\mathbf{A}_k, \mathbf{B}_k]$, $\|\hat{\Psi} - \Psi\|/\|\Psi\| := \max_{k \in [s]} \|\hat{\Psi}_k - \Psi_k\|/\|\Psi_k\|$.

Adaptive MJS-LQR (right)

- Consider MJS with $n = 10$, $p = 8$, and $s \in \{5, 10\}$.
- Set the number of epochs to five and epoch increment ratio to $\gamma = 2$.



(a) System identification with varying σ_w .



(b) Regret evaluation for adaptive MJS-LQR control.

