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Introduction
â Markov jump systems (MJS) are powerful for modeling a richer set of problems

where the underlying dynamics can abruptly change over time.

â The statistical analysis for MJS is challenging:
l The common stability of MJS is in the mean-square sense.
l The convergence of an MJS trajectory depends heavily on the mode switching
sequence. For example. state trajectories of a two-mode MJS

{
xt+1 = 0.7xt
xt+1 = 1.2xt

with T=
[

0.7 0.3
0.4 0.6

]
, x0=1, Ω1 = {1, 1, . . .}, and Ω2 = {2, 2, . . .}.

l Mean-square stability < each individual mode being stable.
l Potential unstable realizations make non-asymptotic statistical analysis in learn-
ing and data-driven control difficult, e.g. no available light-tail inequality.

â Goal: address these challenges to provide guarantees for non-asymptotic identifi-
cation and adaptive control of MJS’s.

Our Approach

Problem Formulation
â Markov Jump System (MJS(A1:s,B1:s,T))

xt+1 = Aω(t)xt + Bω(t)ut + wt

l Active mode index: ω(t) ∼ Markov Chain(T), ergodic T ∈ Rsxs

l Mode k: state matrix Ak ∈ Rnxn, input matrix Bk ∈ Rnxp,∀k ∈ [s]
l Process noise: wt ∼ N (0, σ2

wI)
â Assumptions

l MJS dynamics A1:s,B1:s,T are unknown.
l Mean Square Stabilizability (MSS)— exists K1:s s.t. input ut = Kω(t)xt
gives ‖E[xt]− x∞‖ → 0, ‖E[xtx

ᵀ
t ]−Σ∞‖ → 0 for some x∞ and Σ∞.

â Linear Quadratic Regulator (LQR(Q1:s,R1:s))

minimize
u0:T

J(u0:T ) :=
T∑
t=0

E
[
xᵀ
tQω(t)xt+uᵀ

tRω(t)ut
]

l Cost matrices: Qk � 0,Rk � 0,∀k ∈ [s]. At time t, xt and ω(t) are observed.
â Goal

l Identify MJS dynamics A1:s,B1:s,T and solve LQR in real time.
l Performance guarantee

n Estimation error: ‖Âk −Ak‖, ‖B̂k −Bk‖, ‖T̂−T‖∞
n Regret: J − J?

Theory
â System Identification — under certain conditions, in epoch i, with prob. 1− δ

max
{
‖Âk −Ak‖,
‖B̂k −Bk‖

}
≤ Õ

(
σz + σw
σzπmin

(n + p) log(Ti)√
Ti

)
,

‖T̂−T‖∞ ≤ Õ
(

1
πmin

√
log(Ti)
Ti

)
.

l Can be applied to generic system identification problem outside of LQR setting.
â LQR — under certain conditions, with prob. 1− δ

Regret(T ) ≤ Õ(log2(T )
√
T ).

â When B1:s are known, no exploration is needed, i.e. σz = 0, and guarantees
improve:

‖Âk −Ak‖ ≤ Õ
(

(n + p) log(T )
πmin
√
T

)
,

Regret(T ) ≤ Õ(log3(T )).

Experiments
The depicted results are averaged over 50 independent runs.
â System Identification (left)

l Consider MJS with n = 10, p = 8, and s = 10. (A1:s,B1:s,T) are generated
randomly.

l Ψ̂k:=[Âk, B̂k], Ψk:=[Ak,Bk], ‖Ψ̂− Ψ‖/‖Ψ‖:= maxk∈[s] ‖Ψ̂k − Ψk‖/‖Ψk‖.
â Adaptive MJS-LQR (right)

l Consider MJS with n = 10, p = 8, and s ∈ {5, 10}.
l Set the number of epochs to five and epoch increment ratio to γ = 2.
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(a) System identification with varying σw.
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(b) Regret evaluation for adaptive MJS-LQR control.
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