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Markov jump systems (MJS) are powerful for modeling a richer set of problems
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Markov Jump System (MJS(A ., B4, T)) System ldentification — under certain conditions, in epoch ¢, with prob. 1 —9 The depicted results are averaged over 50 independent runs.
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Assumptions Can be applied to generic system identification problem outside of LQR setting. Consider MJS with n = 10, p =8, and s € {5, 10}.
MJS dynamics Aq.q, By.s, T are unknown. LQR — under certain conditions, with prob. 1 — & Set the number of epochs to five and epoch increment ratio to v = 2.
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(a) System identification with varying o, (b) Regret evaluation for adaptive MJS-LQR control.

/4
X
o
| — SR
2V e
A
.7
)
)
& 3
v -
L]

|dentify MJS dynamics Aj.c,B1.5, T and solve LQR in real time.
Performance guarantee
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Estimation error: ||Ap — Ay
Regret: J — J*
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