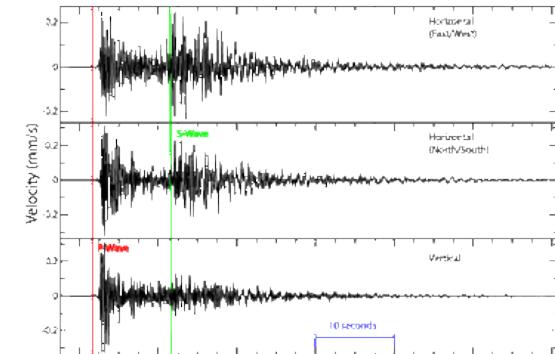
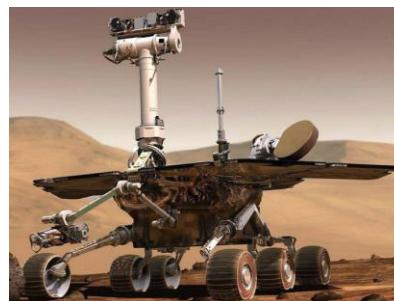


Mode Clustering for Markov Jump Systems

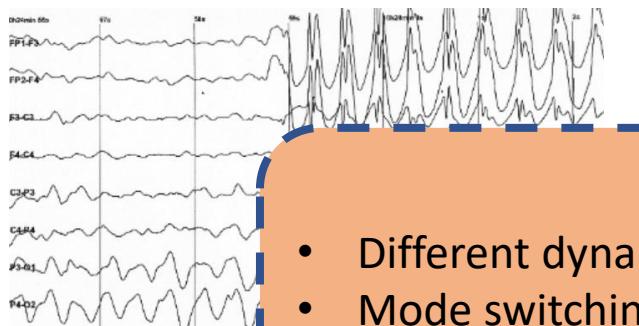
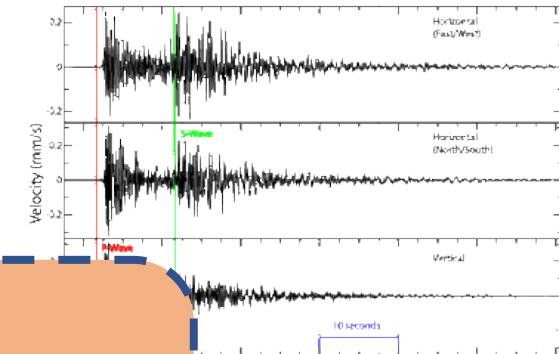
Zhe Du, Laura Balzano, Necmiye Ozay

ECE, University of Michigan

Background

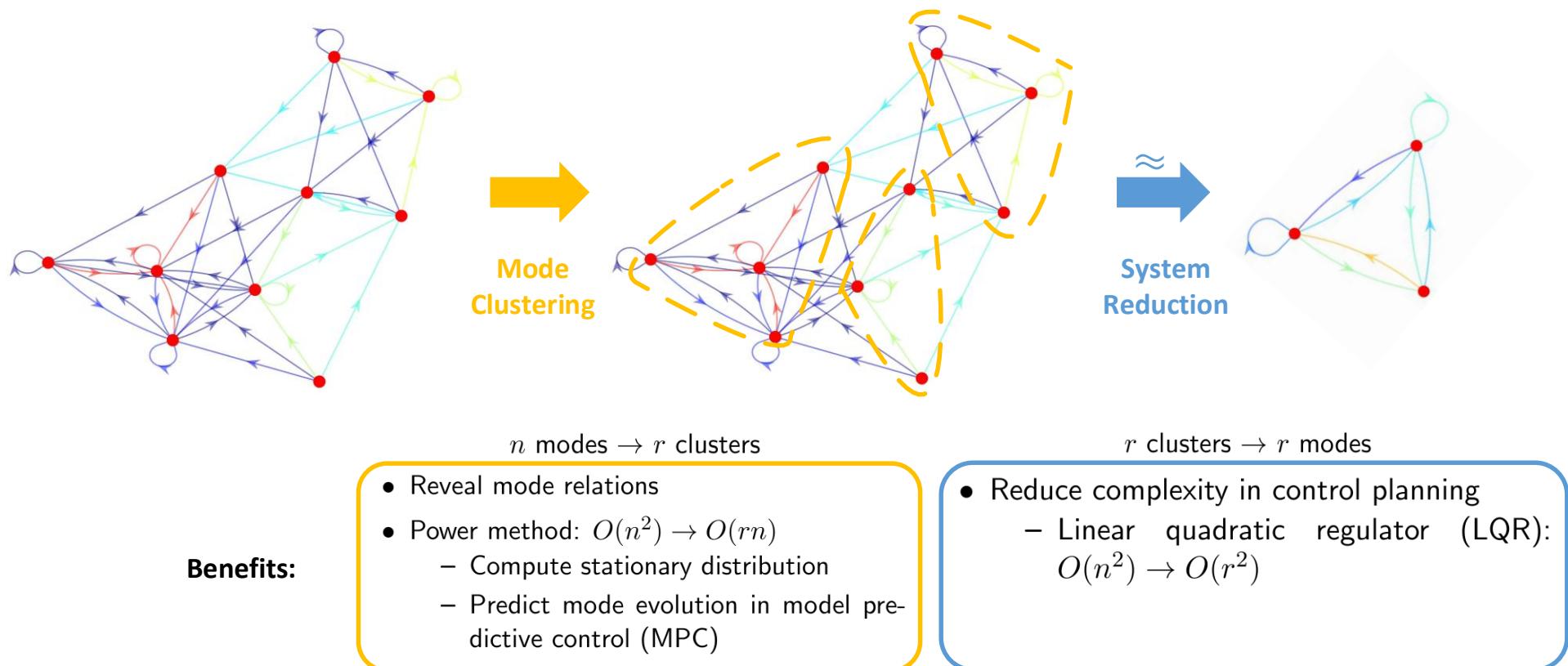


Markov Jump System



- Different dynamics under different modes
- Mode switching model-> Markov chain
- But, the state space of Markov chain can be *huge*

Motivation



Markov Jump System

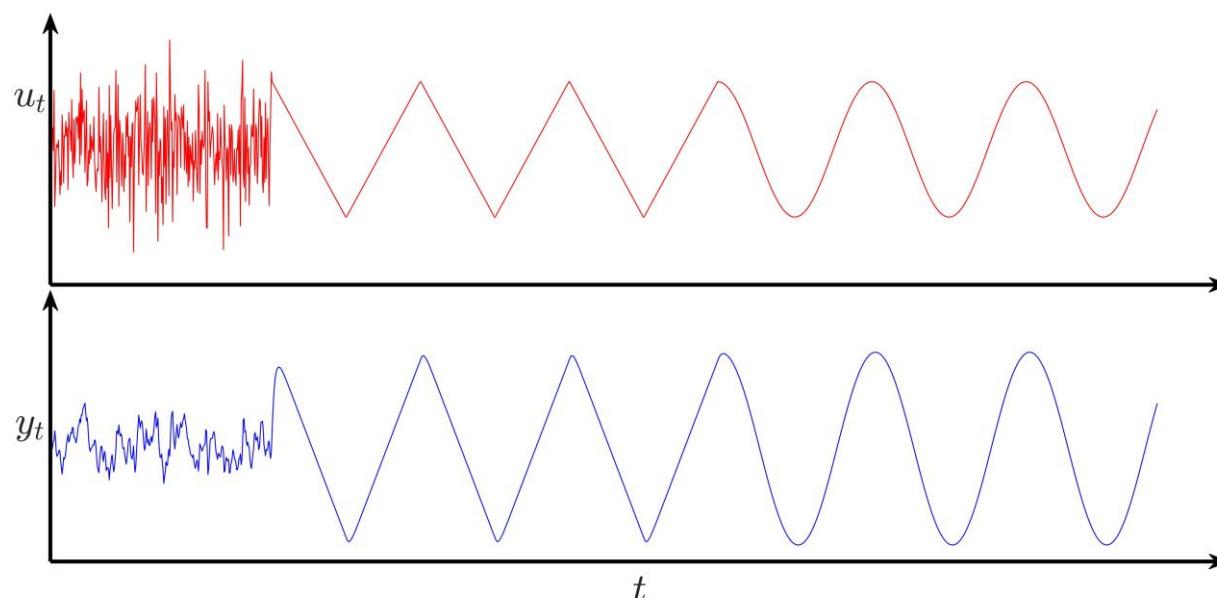
$$y_t = \sum_{i=1}^{n_a} a_i y_{t-i} + \sum_{j=1}^{n_c} c_j u_{t-j} + n_t$$

output

dynamics

disturbance

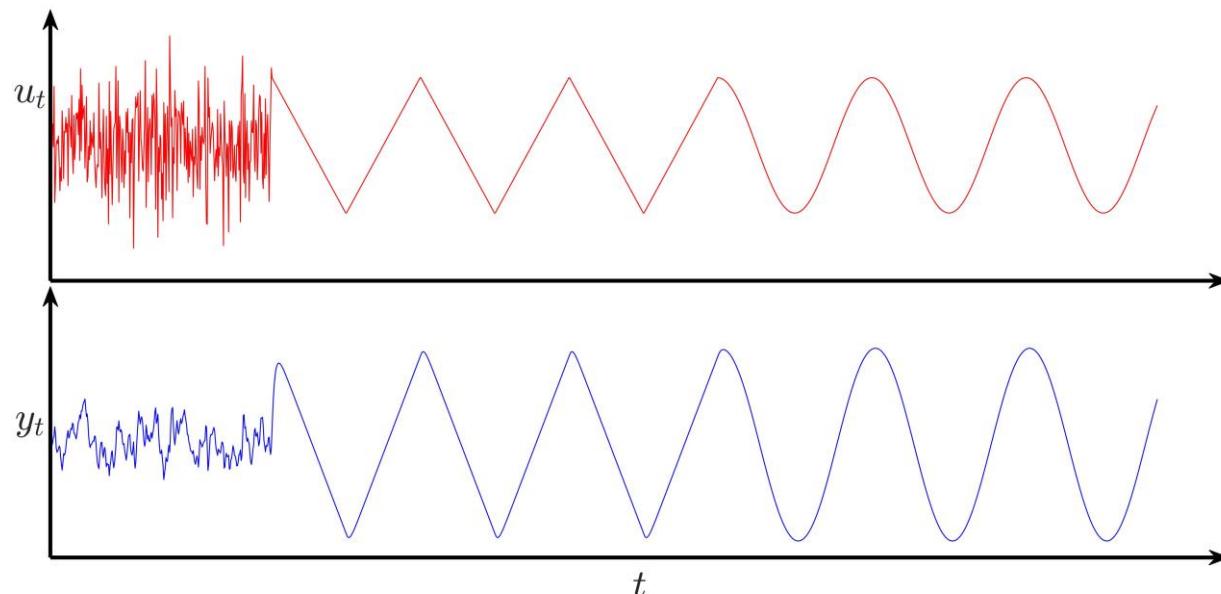
input



Markov Jump System

$$y_t = \mathbf{w}^\top \Phi_t + n_t$$

$$\Phi_t = \begin{bmatrix} y_{t-1} \\ \vdots \\ y_{t-n_a} \\ u_{t-1} \\ \vdots \\ u_{t-n_c} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} a_1 \\ \vdots \\ a_{n_a} \\ c_1 \\ \vdots \\ c_{n_c} \end{bmatrix}$$



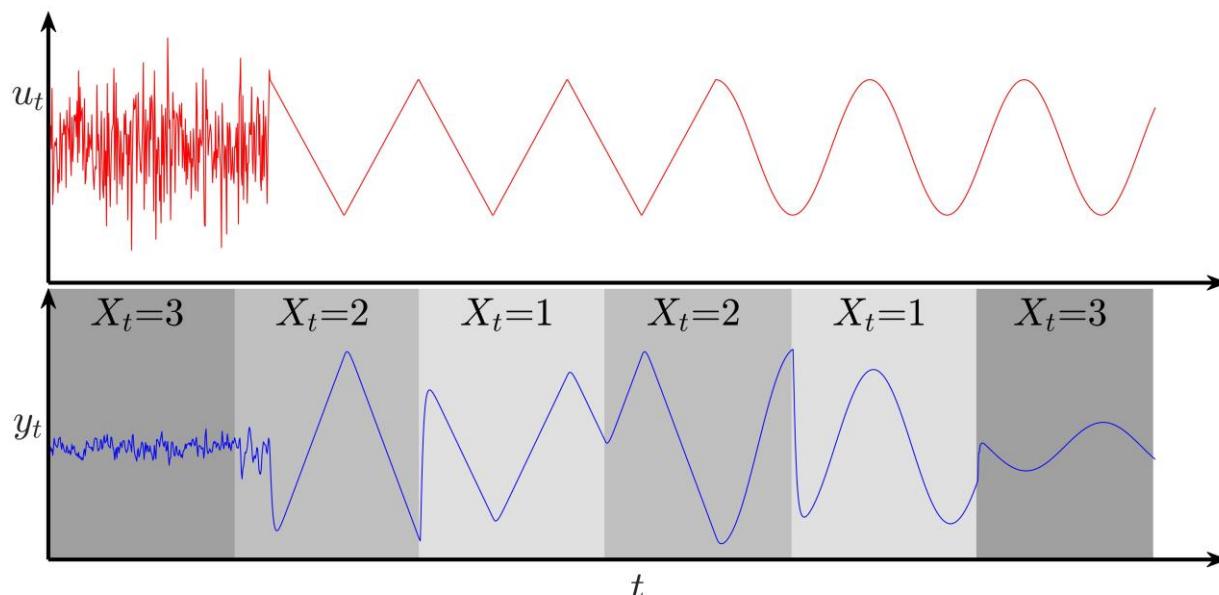
Markov Jump System

$$y_t = \mathbf{w}_{\mathbf{X}_t}^\top \Phi_t + n_t$$

$$X_t \in \{1, 2, \dots, n\}$$

$\sim \text{MarkovChain}(\mathbf{P})$

$$\Phi_t = \begin{bmatrix} y_{t-1} \\ \vdots \\ y_{t-n_a} \\ u_{t-1} \\ \vdots \\ u_{t-n_c} \end{bmatrix} \quad \mathbf{w}_{\mathbf{X}_t} = \begin{bmatrix} a_1(X_t) \\ \vdots \\ a_{n_a}(X_t) \\ c_1(X_t) \\ \vdots \\ c_{n_c}(X_t) \end{bmatrix}$$



Problem Formulation

- **Assume**

-

$$\mathbf{P} = \bar{\mathbf{P}} + \Delta$$

- * $\bar{\mathbf{P}}$ — an underlying Markov matrix that is *r-aggregatable*, i.e. state space $\{1, 2, \dots, n\}$ has partition $\{\Omega_1, \dots, \Omega_r\}$ s.t. states within the same cluster share the same transition distributions. Mathematically, $\forall k, \forall i, j \in \Omega_k$

$$\begin{aligned} \mathbf{Prob}(X_{t+1}|X_t = i) &= \mathbf{Prob}(X_{t+1}|X_t = j) \\ \text{or } \bar{\mathbf{P}}(i, :) &= \bar{\mathbf{P}}(j, :). \end{aligned}$$

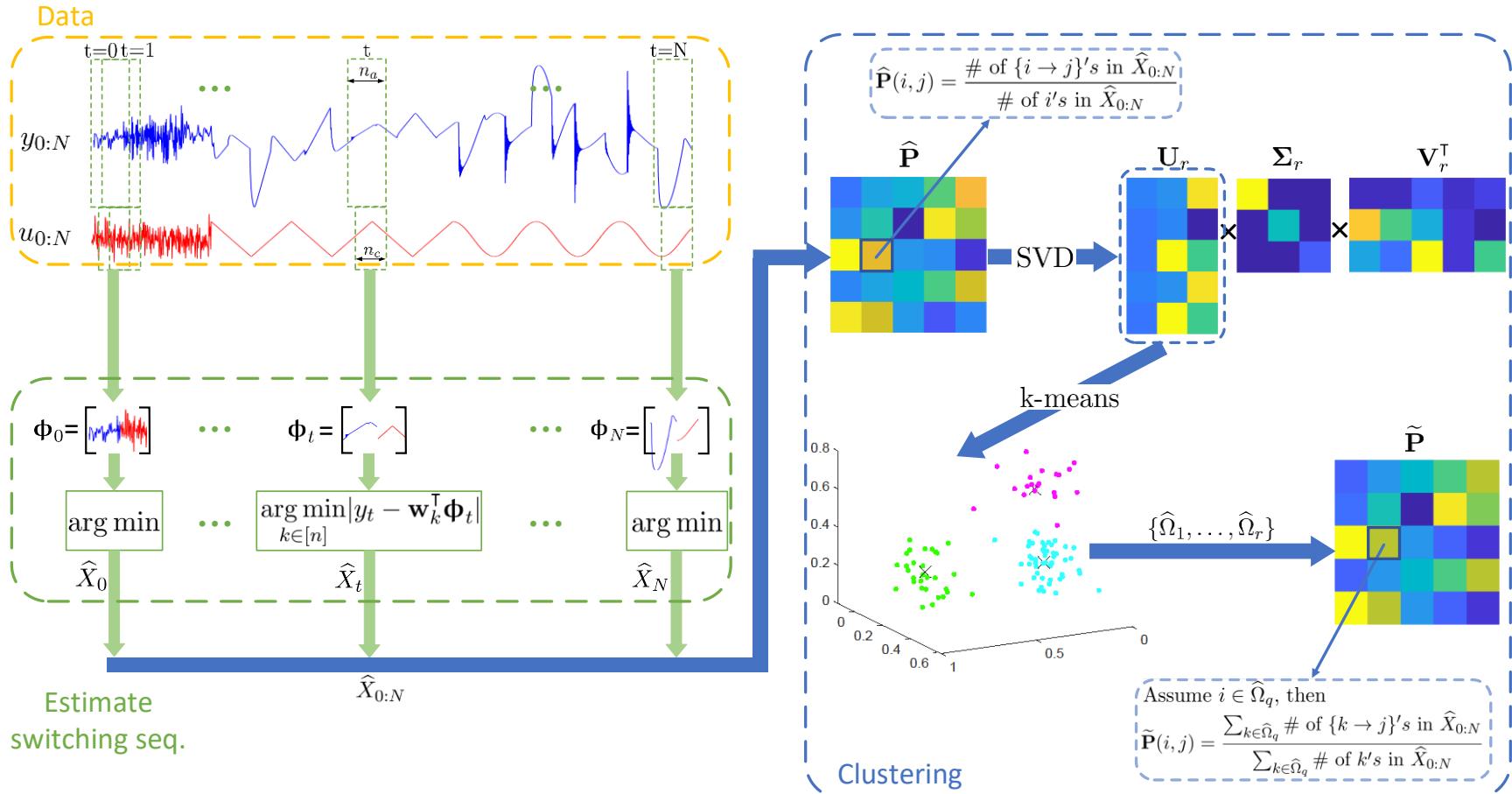
- * Δ — perturbation

- Number of clusters r and dynamics $\{\mathbf{w}_k\}_{k=1}^n$ are known apriori
 - Disturbance $|n_t| < n_{\max}$

- **Goal**

- Given trajectory $\{y_t, u_t\}_{t=0}^N$ only, estimate $\bar{\mathbf{P}}$ and its partition $\{\Omega_1, \dots, \Omega_r\}$.

Our Approach



Theory

Notations

n	number of modes	τ_*	mixing time	N	trajectory length
r	number of clusters	$\sigma_i(\bar{\mathbf{P}})$	i th singular value		
$\ \Delta\ $	perturbation	π_{\max}, π_{\min}	max, min in $\pi_{\text{stationary}}$		
		$ \Omega_{(i)} $	size of i th largest cluster		

Definition 1 (*Clustering Error(CE)*).

$$CE(\hat{\Omega}_{1:r}) = \frac{1}{n} \sum_{j=1}^r |\{i : i \in \Omega_j; i \notin \hat{\Omega}_j\}|$$

Theorem 1. When \mathbf{P} is ergodic, $\|\Delta\| \leq C_0 \frac{\sigma_r(\bar{\mathbf{P}})}{\sqrt{r}} \sqrt{1 + \frac{|\Omega_{(r)}|}{|\Omega_{(1)}|}}$, and under some other mild conditions, for $\epsilon > 0$, with probability no less than $1 - \exp(-C_1 N \epsilon^3 / (\tau_* \pi_{\max}))$

$$CE(\hat{\Omega}_{1:r}) \leq C_2 \frac{nr}{|\Omega_{(r)}|} \left(\frac{\|\Delta\|}{\sigma_r(\bar{\mathbf{P}})} + \epsilon \frac{\sigma_1(\bar{\mathbf{P}})}{\pi_{\min} \sigma_r(\bar{\mathbf{P}})} \right)^2$$

Theory

Adverse Factors				Favorable Factor	
n	number of modes	τ_*	mixing time		
r	number of clusters	$\sigma_1(\bar{\mathbf{P}})/\sigma_r(\bar{\mathbf{P}})$	condition number	N	trajectory length
$\ \Delta\ $	perturbation	π_{\max}/π_{\min} $ \Omega_{(1)} / \Omega_{(r)} $	disparity in $\pi_{\text{stationary}}$ disparity in cluster sizes		

Definition 1 (*Clustering Error(CE)*).

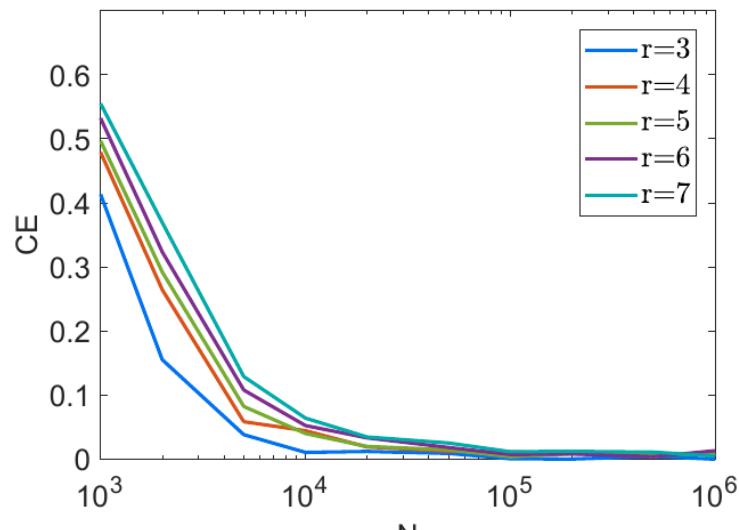
$$CE(\hat{\Omega}_{1:r}) = \frac{1}{n} \sum_{j=1}^r |\{i : i \in \Omega_j; i \notin \hat{\Omega}_j\}|$$

Theorem 1. When \mathbf{P} is ergodic, $\|\Delta\| \leq C_0 \frac{\sigma_r(\bar{\mathbf{P}})}{\sqrt{r}} \sqrt{1 + \frac{|\Omega_{(r)}|}{|\Omega_{(1)}|}}$, and under some other mild conditions, for $\epsilon > 0$, with probability no less than $1 - \exp(-C_1 N \epsilon^3 / (\tau_* \pi_{\max}))$

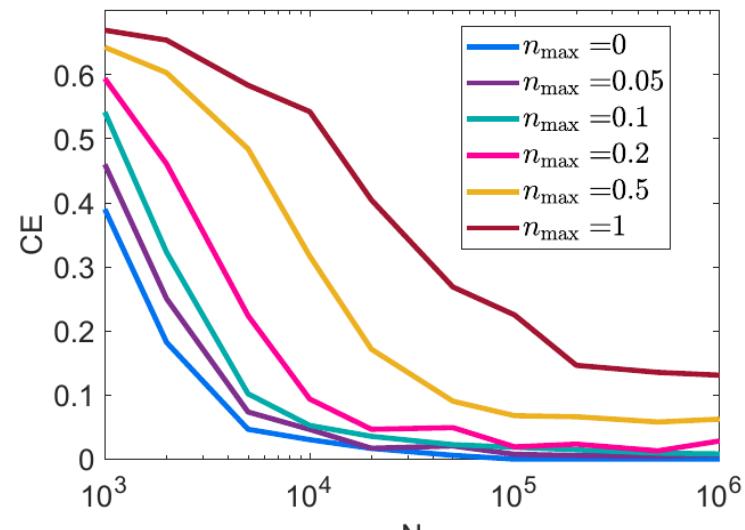
$$CE(\hat{\Omega}_{1:r}) \leq C_2 \frac{nr}{|\Omega_{(r)}|} \left(\frac{\|\Delta\|}{\sigma_r(\bar{\mathbf{P}})} + \epsilon \frac{\sigma_1(\bar{\mathbf{P}})}{\pi_{\min} \sigma_r(\bar{\mathbf{P}})} \right)^2$$

Experiments

- $n_a=3, n_c=2, n=50$;
- Dynamics are generated by uniformly sampling poles on $(-1, 1)$;
- $u_t \sim \mathcal{N}(0, 1), n_t \sim \text{Unif}(-n_{\min}, n_{\max})$
- Partition $\Omega_{1:r}$ is sampled uniformly;
- $\bar{\mathbf{P}}(\Omega_k, :), \boldsymbol{\pi}_0 \sim \text{DirichletDist}$;
- $\Delta = \mathbf{0}$ for now for simpler implementation.
- The errors are averaged over 100 experiments.



(a) CE vs N vs r , $n_{\max} = 0.1$

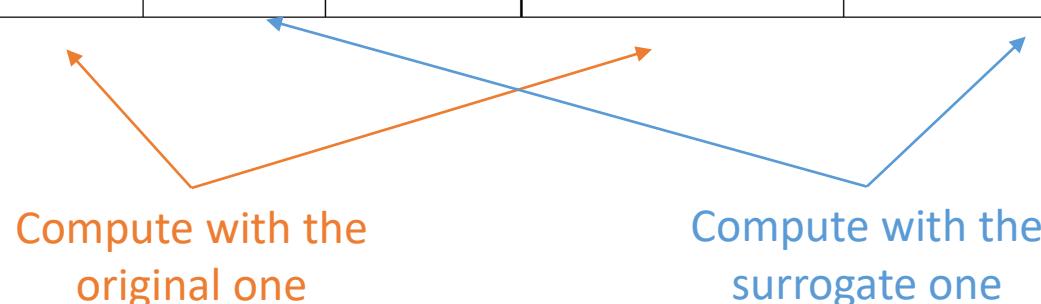


(b) CE vs N vs n_{\max} , $r = 6$

Experiments

- Mode clustering can help reduce the computation complexity

Compute Stationary Dist.			Linear Quadratic Regulator		
$r = 10$	\mathbf{P}	$\tilde{\mathbf{P}}$	$r = 5$	Original MJS	Reduced MJS
$n = 1000$	0.029s	0.005s	$n = 20$	80.42s	3.04s
$n = 2000$	0.197s	0.025s	$n = 30$	168.34s	2.82s
$n = 5000$	1.318s	0.118s	$n = 40$	322.26s	2.85s
$n = 10000$	5.035s	0.426s	$n = 50$	483.47s	3.01s



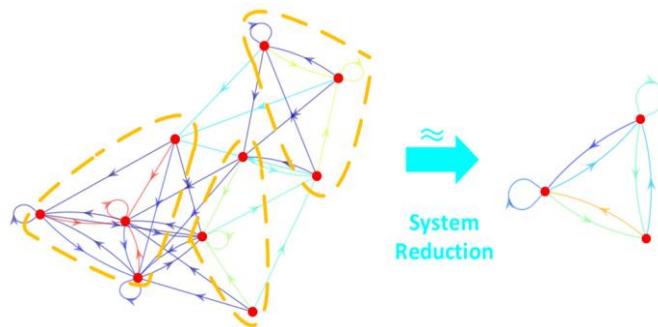
Conclusion

- Summary
 - We propose a theoretically guaranteed approach to cluster modes of MJS based on their transition dynamics.
 - Simulation shows satisfactory performance in terms of clustering error.
 - This approach has prospect in system reduction.

Conclusion

- Summary
 - We propose a theoretically guaranteed approach to cluster modes of MJS based on their transition dynamics.
 - Simulation shows satisfactory performance in terms of clustering error.
 - This approach has prospect in system reduction.

- Future work



- System reduction: combine the dynamics within the same cluster
- Aggregability → Lumpability