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Markov Jump System
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Motivation

System

Reduction ¢
n modes — r clusters r clusters — r modes
* Reveal mode relations (e Reduce complexity in control planning )
e Power method: O(n?) — O(rn) — Linear quadratic regulator (LQR):
Benefits: — Compute stationary distribution O(n?) = O(r?)
— Predict mode evolution in model pre-
dictive control (MPC) Y y
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Markov Jump System

dynamics
Ny nx disturbance
Yt = Z a;Y¢—; + Z CjUt—j + nt/
7 i=1 =t
output input

Y

Yt

Y

ELECTRICAL &
‘ E ECOMPUTER ENGINEERING 3/9

UNIVERSITY OF MICHIGAN



Markov Jump System
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Markov Jump System

Yt = W}ft (l)t + Tt

X € {1,2,...,%}
~ MarkovChain(P)

A

Yt—1

yt—na
uUt—1

Wy, =
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Problem Formulation

e Assume
_ P=P+A

+ P — an underlying Markov matrix that is r-aggregatable, i.e. state
space {1,2,...,n} has partition {€21,...,€Q,} s.t. states within the

same cluster share the same transition distributions. Mathematically,
Vk‘,V’i,j e
pl‘Ob(XH_l‘Xt = Z) = Prob(XtH\Xt = j)

or P(i,:) = P(j,:).

* A — perturbation
— Number of clusters r and dynamics {wy}}_, are known apriori

— Disturbance |n¢| < nmax

e Goal

— Given trajectory {y;, us }i* , only, estimate P and its partition {Qy,...,Q,}.
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Our Approach

N # of {i — j}'sin )’(\D:N}
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switching seq.
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Theory

Notations
n number of modes T mixing time
r number of clusters oi(P) 1th singular value _
N | trajectory length
||A|| | perturbation Tmax, Tmin | MAaX, MiN i Tstationary
1) size of ith largest cluster
Definition 1 ( Clustering Error(CE)).
_~ 1 T . i ) ~
CE(Q4.,) = - ijl {i:1€ Qi ¢ Q)

Theorem 1. When P is ergodic, || A|| < Cy \(f) 1+ Ig(”l and under some other

mild conditions, for e > 0, with probability no less than 1 — exp(—CNe> /(TwTmax))

nr (||A|| e 01(15)_ )2
|Q(?’)| UT(P) ﬂ_mino-fr(P)
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Theory

Adverse Factors Favorable Factor
n number of modes Ty mixing time
r | number of clusters | o1(P)/o,.(P) | condition number

N | trajectory length
|A|l | perturbation Tmax/Tmin | disparity in Tstationary

1Q)l/[2)| | disparity in cluster sizes

Definition 1 ( Clustering Error(CE)).
~ 1

CE@1,) = itieQig O}

n

Theorem 1. When P is ergodic, || A|| < Cy \(f) 1+ Ig(”l and under some other

mild conditions, for ¢ > 0, with probability no less than 1 — exp(—C1 N €3 /(TwTmax))

nr (||A|| e 01(15)_ )2
|Q(?‘)| U’F(P) ﬂFnﬂinU?‘(l:))
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Experiments

o 1n,=3,n.=2,n=50;

o Dynamics are generated by uniformly sampling ° P (S, :), 70 ~ DirichletDist;
poles on (—1,1); e A = 0 for now for simpler implementation.

- e [ he errors are averaged over 100 experiments.
quN(Da 1)3 ntNUn%f(_nmina nmax) g 00 P

Partition €21, is sampled uniformly;
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Experiments

e Mode clustering can help reduce the computation complexity

Compute Stationary Dist. Linear Quadratic Regulator
r=10 P P r =5 | Original MJS | Reduced MJS
n = 1000 | 0.029s | 0.005s | n = 20 80.42s 3.04s
n = 2000 | 0.197s | 0.025s | n = 30 168.34s 2.82s
n = 5000 | 1.318s | 0.118s | n = 40 322.26s 2.8bs
n = 10000 | 5.035s | 0.426s | n = 50 483.47s 3.01s
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Conclusion

e Summary
— We propose a theoretically guaranteed approach to cluster modes of MJS
based on their transition dynamics.
— Simulation shows satisfactory performance in terms of clustering error.

— This approach has prospect in system reduction.

ELECTRICAL &
COMPUTER ENGINEERING 9/9

UNIVERSITY OF MICHIGAN



Conclusion

e Summary

— We propose a theoretically guaranteed approach to cluster modes of MJS
based on their transition dynamics.

— Simulation shows satisfactory performance in terms of clustering error.

— This approach has prospect in system reduction.

e Future work

— System reduction: combine the dynamics within the same cluster

— Aggregatability — Lumpability
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