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Background

» Status quo of online switched sys. id. (Bako et al. (2011), Goudijil et al.(2016))

* Sensitive to initialization
e Lack nice theoretical guarantees

* Our main contributions:
* Proposed an algorithm that is robust to initialization
* Proved theoretical guarantees under local initialization
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Prelims: SARX System |dentification

» Switched AutoRegressive eXogenous (SARX) System
Yt = ji:ay(@)UtA;+'§E:(k (z¢)up— + ny

7j=1 k=1
e zef{l,..., m} indexes the active subsystem at time t

e Example: m =3

10 Jﬂl
Yt o WNWWMMWU& J’\UJ“MMMMWWW

-10

Subsystem 1: y; = 0.2y;_, + 0.24y;_, + 2u;_4 10

Subsystem 2: y; = 0.7y;_1 — 0.12y;_, + 0.5u;_4 Ut o
10}

Subsystem 3: y, = 1.7y;,_; — 0.72y,_, + 0.5u;_,

Zt 2+ —_—
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Prelims: SARX System |dentification

» Switched AutoRegressive eXogenous (SARX) System

,U.',—ZCLJ(7E)UI' J‘FZ(A (ze)up—p + ny

7j=1 k=1
* z€{l,...,m} indexes the active subsystem at time t

* Assume, E[n:] =0, |n¢| < nmax, aNd nyax. 04, 0., m are known
* Simplification: let w., = [a1.0, (2¢), Cli0. (2¢)]T Dy = [Yt—1:t—04 Ut—1:1-0.) ", then
Yt = sz_ Py + ny
e Goal of Sys. Id.:

Given the output v and input u; (or {¢,, v:}, equivalently),
* |dentify switching sequence{z;}
* Estimate parameter a and ¢ for each subsystem, i.e.w_,
* Particularly, in a online fashion
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Algorithm: Overview
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Algorithm: Make Assignment

* What if we assign data based on minimum residual error?

iFor candidates i € [m], compute

Receive data

{qbtw yl‘}

Failure illustration:

O

True
System

Candidate
Estimates

residual error
ri = |yr — V/‘\’L71¢r|

Assign data/determine seq.

Phase 1: Sysl is dominant

o1

> Zy = argmin 7r;
1

Sensitive to initialization: previously well converged candidate may shift to learn a new
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* Qur strategy

Receive data
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Theoretical Guarantees

Theorem 1 (Local Convergence). WLOG, if Vi, |€ ol = |wi— wW;o| < €y, then under certain

assumptions, with probability at least 1 — 2m\/ ]2{—‘5 (eg 4+ N ), we have the following results:

e We can correctly identify the switching sequence, i.e. Y,z = z

o We have the following convergence bounds in mean square sense: decaying part

E [|les]*] <

E [|lei4]|?] > (1-&.2)] o2

If t — oo, then
2 2

. KR_..
N op < E[lleisl*] < Ng nglfxffﬁ
max min
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Numerical Simulations

* Evaluation of convergence bounds

2
_ t K _ i
E [Jleid]?] < (1=rni) e1 + NamB [1—di (1 - 5ly)'| o2
min
2
— t 3 — t
E [Hei,t |2] = (1 o é-Inign) c2 + NRFISHI [1 —da (1 o 61111211) ] 05?1
max
" E Error Effe |
. i i stimation Error €it ,
Consider a single subsystem — Upper Bound
yr = 0.7ys—1 — 0.12y4—0 + up—1 + 1t — Lower Bound
with n; ~ N(0,02), 0, = 1074, and u; ~ N (0, 1) 107

* Take the average of | €;

% over 50 runs as E[||€; ||?]
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Numerical Simulations

* Performance Evaluation and Comparison (Single realization)
* Consider SARX system with 4 subsystems
e Subsystem 1: y; = 0.2y 1 + 0.24y; o + 2us_1 + 1y
e Subsystem 2: 1y, = 0.7y 1 — 0.12y; o + Ly + 1y
e Subsystem 3: yy = —1.dy—1 — 0.93ys—2 + Lus—1 + ny

e Subsystem 4: yy = 1.7yr—1 — 0.72y; 9 + 0.5up 1 + ny

* with n; ~ truncate(N(0,02), [-30,,30,]), 0, = 10~%, and u; ~ N(0,1)
e Consider 3 switching patterns

* Slow Switching (SS)
. z = [t/500]

*  Minimum Dwell Time (MD)

e Each subsystem dominates for 30 + Geom(1/16), then switch to a new subsystem equally likely
*  Fast Switching (FS)

. Vi, P(zy = i) = 0.25, 2 AL z,
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OBE

Ours

Numerical Simulations

Comparison with the Outer Bounding Ellipsoid (OBE) algorithm Goudijil et al.(2016)
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Numerical Simulations

* Performance Evaluation and Comparison (Multiple Realizations)

Same four subsystems under all combinations of {SS, M D, FS} and o, = {10~1,1072,1073}

For each combination, run 100 realizations, and for the ith realization, randomly generate

system parameters and compute

FE(i) = L7 ezl CER(i) = # 31, 1z # %)
The average FE and CER are given below

Ours OBE Ours OBE

FE FE CER | CER
SS, 1071 | 8.4x10 8.7x10 56.3% | 59.1%
SS, 1072 | 2.8x1072 | 8.2x10 22.1% | 55.5%
SS, 1073 | 9.0x1073 | 8.2x10 8.35% | 56.4%
MD, 107! | 4.3x10 5.2x10 17.5% | 50.3%
MD, 1072 | 4.0x1072 | 2.8x10 11.3% | 31.3%
MD, 1072 | 9.4x107% | 2.4x10 4.91% | 28.8%
FS, 1071 | 2.6x10 6.8x10 39.3% | 53.9%
FS, 1072 | 6.0x1072 | 1.5x10 11.7% | 22.1%
FS, 1073 | 5.8x1072 | 1.8x10 8.93% | 18.9%
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Conclusion & Future Plan

e Conclusion
* Proposed an online SARX system identification algorithm that is robust to initialization using
a novel criterion to make assignment

* Showed the theoretical guarantees: (i) exact switching sequence identification and (ii)
convergence bounds on estimation error, with local initialization

* Simulations demonstrate satisfactory performance under various experiment setups

e Future Work
e Theory: relax assumptions, global convergence
* Application: Video segmentation, drone controller identification

e Extension: Input design
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