

A Robust Algorithm for Online Switched System Identification

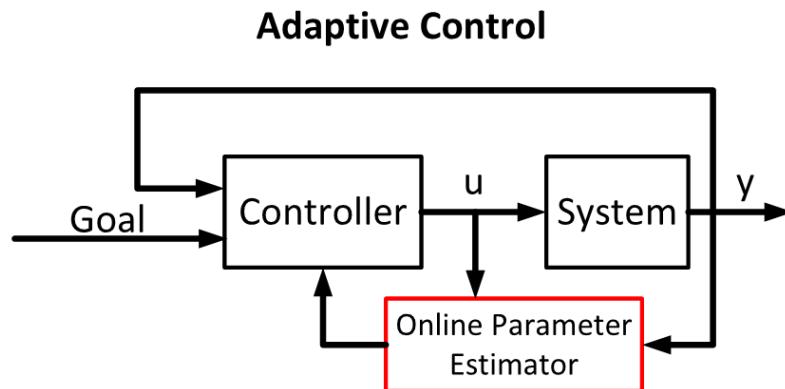
Zhe Du, Laura Balzano, Necmiye Ozay
ECE, University of Michigan

Background

- Application of system identification
 - Adaptive control
 - Fault detection
 - Motion/texture video segmentation
 - Applications involving autoregressive model

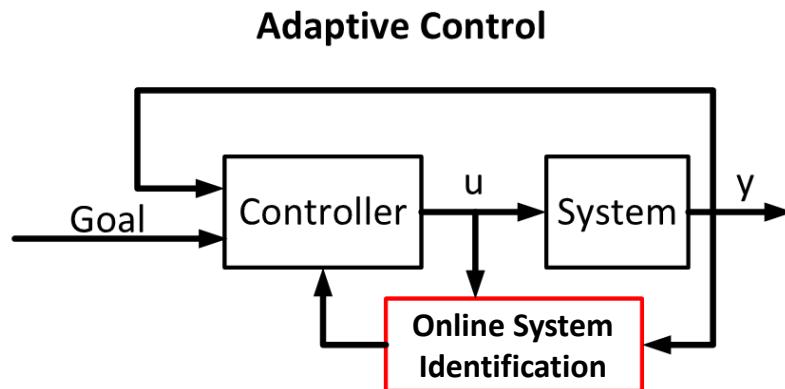
Background

- Application of system identification
 - Adaptive control
 - Fault detection
 - Motion/texture video segmentation
 - Applications involving autoregressive model



Background

- Application of system identification
 - Adaptive control
 - Fault detection
 - Motion/texture video segmentation
 - Applications involving autoregressive model

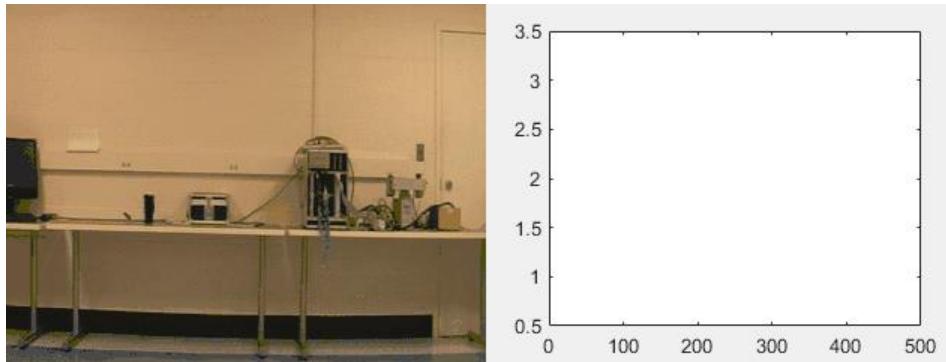


Background

- Application of system identification
 - Adaptive control
 - **Fault detection**
 - Motion/texture video segmentation
 - Applications involving autoregressive model

Background

- Application of system identification
 - Adaptive control
 - Fault detection
 - Motion/texture video segmentation
 - Applications involving autoregressive model



Ozay et al. (2015, 2012)

Background

- Application of system identification
 - Adaptive control
 - Fault detection
 - Motion/texture video segmentation
 - Applications involving autoregressive model

earthquake prediction
Dai et al. (2015)

brain electrical activity mapping
Ogawa et al. (1993)

financial time series analysis
Aas and Dimakos (2004)

Background

- Status quo of online switched sys. id. (Bako et al. (2011), Goudjil et al.(2016))
 - Sensitive to initialization
 - Lack nice theoretical guarantees
- Our main contributions:
 - Proposed an algorithm that is robust to initialization
 - Proved theoretical guarantees under local initialization

Prelims: SARX System Identification

- Switched AutoRegressive eXogenous (SARX) System

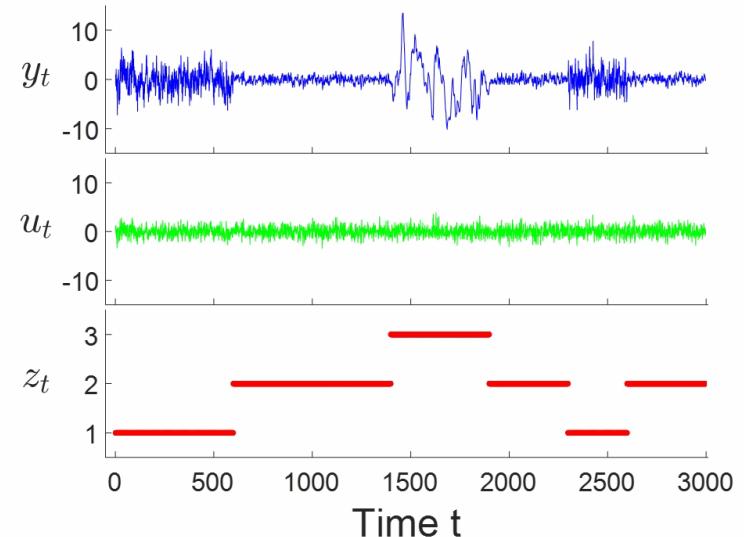
$$y_t = \sum_{j=1}^{o_a} a_j(z_t) y_{t-j} + \sum_{k=1}^{o_c} c_k(z_t) u_{t-k} + n_t$$

- $z_t \in \{1, \dots, m\}$ indexes the active subsystem at time t
- Example: $m = 3$

Subsystem 1: $y_t = 0.2y_{t-1} + 0.24y_{t-2} + 2u_{t-1}$

Subsystem 2: $y_t = 0.7y_{t-1} - 0.12y_{t-2} + 0.5u_{t-1}$

Subsystem 3: $y_t = 1.7y_{t-1} - 0.72y_{t-2} + 0.5u_{t-1}$



Prelims: SARX System Identification

- Switched AutoRegressive eXogenous (SARX) System

$$y_t = \sum_{j=1}^{o_a} a_j(z_t) y_{t-j} + \sum_{k=1}^{o_c} c_k(z_t) u_{t-k} + n_t$$

- $z_t \in \{1, \dots, m\}$ indexes the active subsystem at time t
- **Assume**, $\mathbb{E}[n_t] = 0$, $|n_t| \leq n_{\max}$, and n_{\max}, o_a, o_c, m are known
- **Simplification**: let $\mathbf{w}_{z_t} = [a_{1:o_a}(z_t), c_{1:o_c}(z_t)]^\top$, $\boldsymbol{\phi}_t = [y_{t-1:t-o_a}, u_{t-1:t-o_c}]^\top$, then

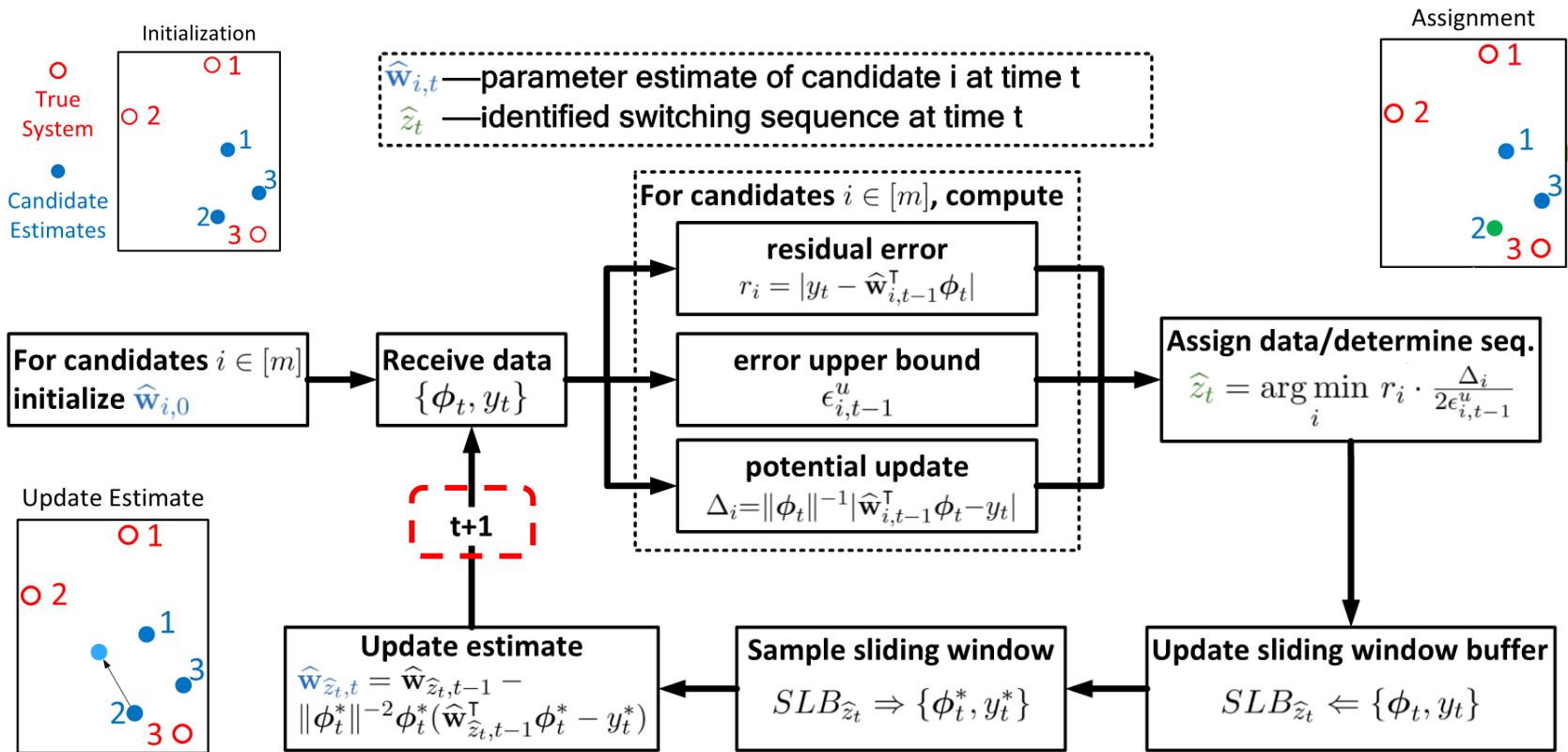
$$y_t = \mathbf{w}_{z_t}^\top \boldsymbol{\phi}_t + n_t$$

- Goal of Sys. Id.:

Given the output y_t and input u_t (or $\{\boldsymbol{\phi}_t, y_t\}$, equivalently),

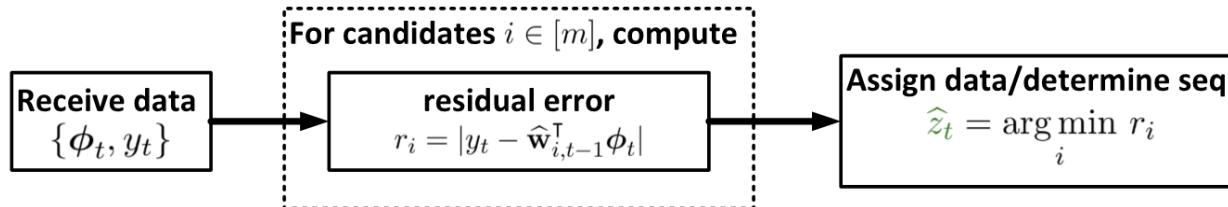
- Identify switching sequence $\{z_t\}$
- Estimate parameter a and c for each subsystem, i.e. \mathbf{w}_{z_t}
- Particularly, in a online fashion

Algorithm: Overview

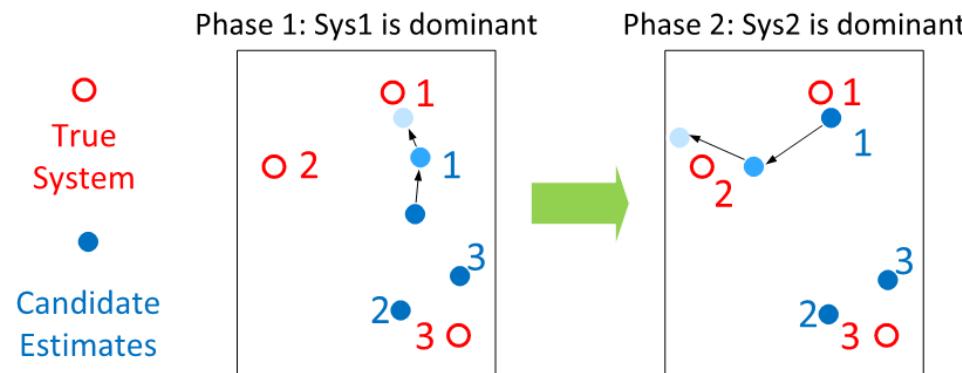


Algorithm: Make Assignment

- What if we assign data based on minimum residual error?

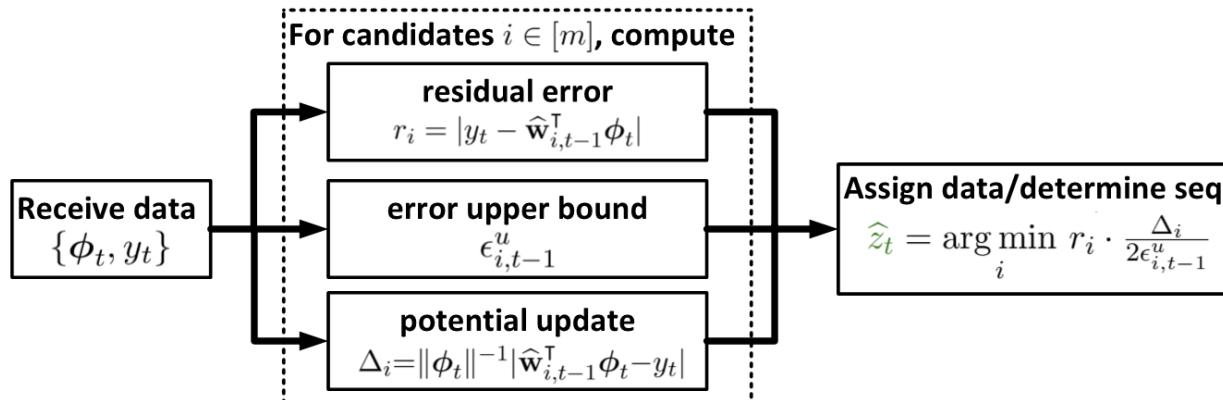


- Sensitive to initialization: previously well converged candidate may shift to learn a new subsystem!
- Failure illustration:

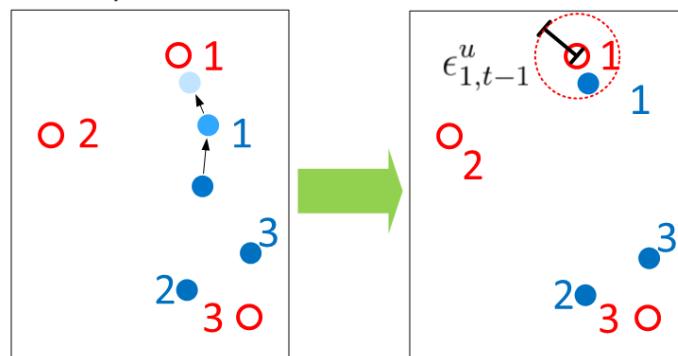


Algorithm: Make Assignment

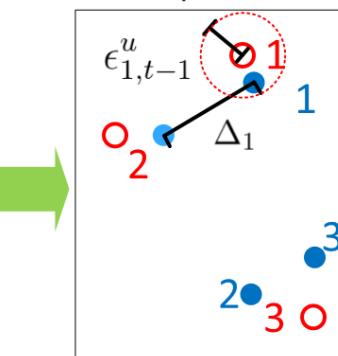
- Our strategy



Phase 1: Sys1 is dominant



Phase 2: Sys2 is dominant



Theoretical Guarantees

Theorem 1 (Local Convergence). *WLOG, if $\forall i, \|\epsilon_{i,0}\| \equiv \|\mathbf{w}_i - \hat{\mathbf{w}}_{i,0}\| \leq \epsilon_0$, then under certain assumptions, with probability at least $1 - 2m\sqrt{\frac{N_R}{\epsilon'^2} \left(\epsilon_0^2 + \frac{N_R}{S_{\min}^2} \right)}$, we have the following results:*

- We can correctly identify the switching sequence, i.e. $\forall t, \hat{z}_t = z_t$
- We have the following convergence bounds in mean square sense:

The diagram illustrates the decomposition of the mean square error bound. It shows two equations for $\mathbb{E} [\|\epsilon_{i,t}\|^2]$ with arrows pointing to a common 'decaying part' term. The top equation is $\mathbb{E} [\|\epsilon_{i,t}\|^2] \leq (1 - \kappa_{\max}^{-2})^t c_1 + N_R \frac{\kappa_{\max}^2}{F_{\min}^2} \left[1 - d_1 (1 - \kappa_{\max}^{-2})^t \right] \sigma_n^2$. The bottom equation is $\mathbb{E} [\|\epsilon_{i,t}\|^2] \geq (1 - \xi_{\min}^{-2})^t c_2 + N_R \frac{\xi_{\min}^2}{F_{\max}^2} \left[1 - d_2 (1 - \xi_{\min}^{-2})^t \right] \sigma_n^2$. A blue arrow points from the term $(1 - \kappa_{\max}^{-2})^t$ in the top equation to a red box labeled 'decaying part'. Another blue arrow points from the term $(1 - \xi_{\min}^{-2})^t$ in the bottom equation to the same red box. The red box is also connected to the term $\left[1 - d_1 (1 - \kappa_{\max}^{-2})^t \right]$ in the top equation and the term $\left[1 - d_2 (1 - \xi_{\min}^{-2})^t \right]$ in the bottom equation.

$$\mathbb{E} [\|\epsilon_{i,t}\|^2] \leq (1 - \kappa_{\max}^{-2})^t c_1 + N_R \frac{\kappa_{\max}^2}{F_{\min}^2} \left[1 - d_1 (1 - \kappa_{\max}^{-2})^t \right] \sigma_n^2$$

$$\mathbb{E} [\|\epsilon_{i,t}\|^2] \geq (1 - \xi_{\min}^{-2})^t c_2 + N_R \frac{\xi_{\min}^2}{F_{\max}^2} \left[1 - d_2 (1 - \xi_{\min}^{-2})^t \right] \sigma_n^2$$

If $t \rightarrow \infty$, then

$$N_R \frac{\xi_{\min}^2}{F_{\max}^2} \sigma_n^2 \leq \mathbb{E} [\|\epsilon_{i,t}\|^2] \leq N_R \frac{\kappa_{\max}^2}{F_{\min}^2} \sigma_n^2$$

Numerical Simulations

- Evaluation of convergence bounds

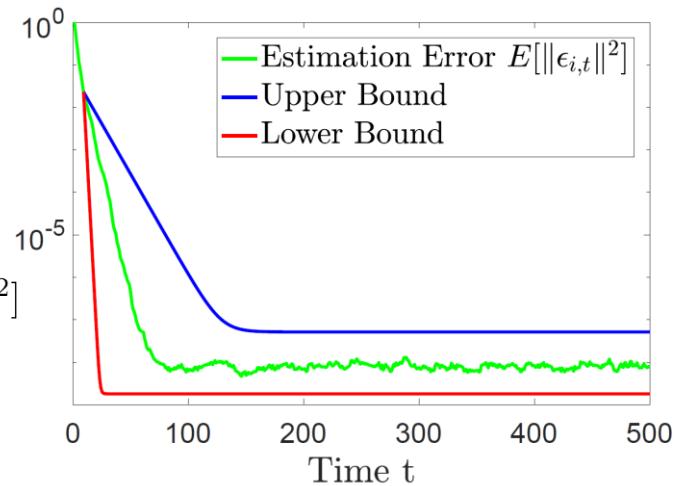
$$\mathbb{E} [\|\epsilon_{i,t}\|^2] \leq (1 - \kappa_{\max}^{-2})^t c_1 + N_R \frac{\kappa_{\max}^2}{F_{\min}^2} \left[1 - d_1 (1 - \kappa_{\max}^{-2})^t \right] \sigma_n^2$$
$$\mathbb{E} [\|\epsilon_{i,t}\|^2] \geq (1 - \xi_{\min}^{-2})^t c_2 + N_R \frac{\xi_{\min}^2}{F_{\max}^2} \left[1 - d_2 (1 - \xi_{\min}^{-2})^t \right] \sigma_n^2$$

- Consider a single subsystem

$$y_t = 0.7y_{t-1} - 0.12y_{t-2} + u_{t-1} + n_t$$

with $n_t \sim \mathcal{N}(0, \sigma_n^2)$, $\sigma_n = 10^{-4}$, and $u_t \sim \mathcal{N}(0, 1)$

- Take the average of $\|\epsilon_{i,t}\|^2$ over 50 runs as $\mathbb{E}[\|\epsilon_{i,t}\|^2]$

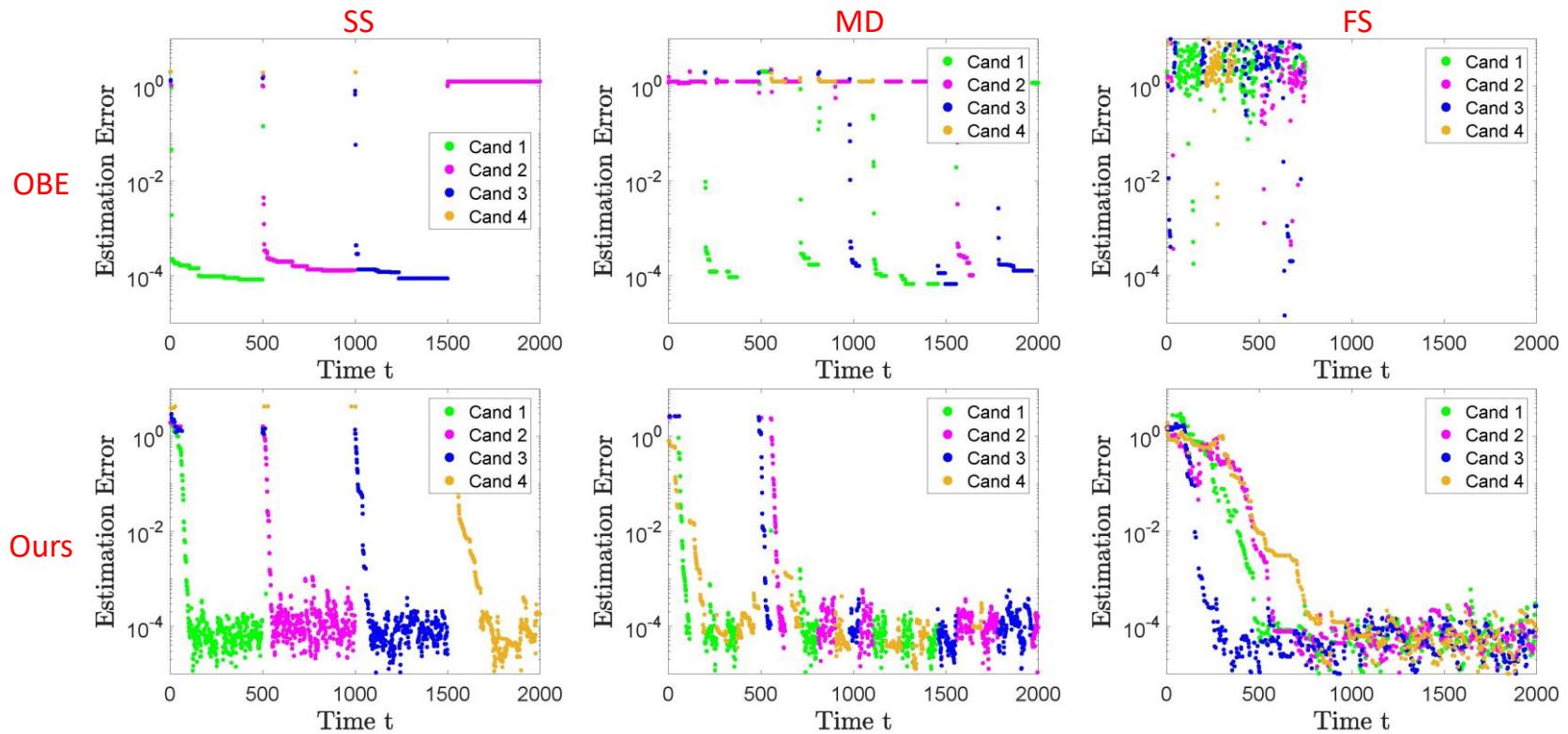


Numerical Simulations

- Performance Evaluation and Comparison (Single realization)
 - Consider SARX system with 4 subsystems
 - Subsystem 1: $y_t = 0.2y_{t-1} + 0.24y_{t-2} + 2u_{t-1} + n_t$
 - Subsystem 2: $y_t = 0.7y_{t-1} - 0.12y_{t-2} + 1u_{t-1} + n_t$
 - Subsystem 3: $y_t = -1.4y_{t-1} - 0.53y_{t-2} + 1u_{t-1} + n_t$
 - Subsystem 4: $y_t = 1.7y_{t-1} - 0.72y_{t-2} + 0.5u_{t-1} + n_t$
 - with $n_t \sim \text{truncate}(\mathcal{N}(0, \sigma_n^2), [-3\sigma_n, 3\sigma_n])$, $\sigma_n = 10^{-4}$, and $u_t \sim \mathcal{N}(0, 1)$
 - Consider 3 switching patterns
 - Slow Switching (SS)
 - $z_t = \lceil t/500 \rceil$
 - Minimum Dwell Time (MD)
 - Each subsystem dominates for $30 + \text{Geom}(1/16)$, then switch to a new subsystem equally likely
 - Fast Switching (FS)
 - $\forall i, P(z_t = i) = 0.25, z_t \perp\!\!\!\perp z_s$

Numerical Simulations

- Comparison with the Outer Bounding Ellipsoid (OBE) algorithm Goudjil et al.(2016)



Numerical Simulations

- Performance Evaluation and Comparison (Multiple Realizations)
 - Same four subsystems under all combinations of $\{SS, MD, FS\}$ and $\sigma_n = \{10^{-1}, 10^{-2}, 10^{-3}\}$
 - For each combination, run 100 realizations, and for the i th realization, randomly generate system parameters and compute

$$FE(i) = \frac{1}{m} \sum_{j=1}^m \|\epsilon_{j,T}\| \quad CER(i) = \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{z_t \neq \hat{z}_t\}$$

- The average FE and CER are given below

	Ours	OBE	Ours	OBE
	FE	FE	CER	CER
SS, 10^{-1}	8.4×10^{-1}	8.7×10^{-1}	56.3%	59.1%
SS, 10^{-2}	2.8×10^{-2}	8.2×10^{-1}	22.1%	55.5%
SS, 10^{-3}	9.0×10^{-3}	8.2×10^{-1}	8.35%	56.4%
MD, 10^{-1}	4.3×10^{-1}	5.2×10^{-1}	47.5%	50.3%
MD, 10^{-2}	4.0×10^{-2}	2.8×10^{-1}	11.3%	31.3%
MD, 10^{-3}	9.4×10^{-3}	2.4×10^{-1}	4.91%	28.8%
FS, 10^{-1}	2.6×10^{-1}	6.8×10^{-1}	39.3%	53.9%
FS, 10^{-2}	6.0×10^{-2}	1.5×10^{-1}	11.7%	22.1%
FS, 10^{-3}	5.8×10^{-2}	1.8×10^{-1}	8.93%	18.9%

Conclusion & Future Plan

- Conclusion
 - Proposed an online SARX system identification algorithm that is robust to initialization using a novel criterion to make assignment
 - Showed the theoretical guarantees: (i) exact switching sequence identification and (ii) convergence bounds on estimation error, with local initialization
 - Simulations demonstrate satisfactory performance under various experiment setups
- Future Work
 - Theory: relax assumptions, global convergence
 - Application: Video segmentation, drone controller identification
 - Extension: Input design

Thank you!